我有以下运行良好的脚本。装饰器on_or_off
从函数中的on_switch
中获取值,并在其值为True
时执行。
import pandas as pd
import ctypes
import sec4_analysis as analysis
# Main class
######################################################################
class Analysis_ProjectX_Demographic(analysis.Analysis_ProjectX):
def __init__(self):
super()
super().__init__()
def demographic_analytic_steps(self):
self.import_parent_ref_data()
self.import_master_data()
self.recategorize_var(on_switch=True)
self.result_in_plaintext(on_switch=True)
self.result_in_csv(on_switch=True)
# Decorators
def on_or_off(func):
def wrapper(self, on_switch, *args):
if on_switch:
func(self, on_switch, *args)
return wrapper
# Core class functions
@on_or_off
def recategorize_var(self, on_switch=False):
self.df_master_filtered = self.recat_binary(self.df_master_filtered, 'INDEX_RURAL', 'INDEX_RURAL_CAT', 0, 'URBAN', 1, 'RURAL')
self.df_master_filtered = self.recat_age(self.df_master_filtered, 'INDEX_AGE', 'INDEX_AGE_CAT')
@on_or_off
def result_in_plaintext(self, on_switch=False):
df_dict = {
'TxGroup':self.df_master_filtered,
}
for df_key, df in df_dict.items():
print ('Dataset name: {}'.format(df_key))
print ('Unique patients, n: {}'.format(df['PHN_ENC'].nunique()))
self.descriptive_num_var_results(df_key, df, 'INDEX_AGE')
self.descriptive_cat_var_results(df_key, df, 'INDEX_AGE_CAT')
self.descriptive_cat_var_results(df_key, df, 'INDEX_RURAL_CAT')
self.descriptive_cat_var_results(df_key, df, 'INDEX_SEX')
@on_or_off
def result_in_csv(self, on_switch=False):
pass
# Helper functions
def recat_binary(self, df, old_var, new_var, old_val1, new_val1, old_val2, new_val2):
df.loc[df[old_var] == old_val1, new_var] = new_val1
df.loc[df[old_var] == old_val2, new_var] = new_val2
return df
def recat_age(self, df, old_var, new_var):
df.loc[(df[old_var]>=19.00)&(df[old_var]<25.00), new_var] = '19-24'
df.loc[(df[old_var]>=25.00)&(df[old_var]<30.00), new_var] = '25-29'
df.loc[(df[old_var]>=30.00)&(df[old_var]<35.00), new_var] = '30-34'
df.loc[(df[old_var]>=35.00)&(df[old_var]<40.00), new_var] = '35-39'
df.loc[(df[old_var]>=40.00)&(df[old_var]<45.00), new_var] = '40-44'
df.loc[(df[old_var]>=45.00)&(df[old_var]<50.00), new_var] = '45-49'
df.loc[(df[old_var]>=50.00)&(df[old_var]<55.00), new_var] = '50-54'
df.loc[(df[old_var]>=55.00)&(df[old_var]<60.00), new_var] = '55-59'
df.loc[(df[old_var]>=60.00)&(df[old_var]<65.00), new_var] = '60-64'
df.loc[(df[old_var]>=65.00)&(df[old_var]<300.00), new_var] = '65/above'
return df
x = Analysis_ProjectX_Demographic()
x.demographic_analytic_steps()
但是,装饰功能应该可以自由使用on_switch
之外的任意数量的参数。当我在some_text
中引入更多参数result_in_plaintext.()
时。
import pandas as pd
import ctypes
import sec4_analysis as analysis
# Main class
######################################################################
class Analysis_ProjectX_Demographic(analysis.Analysis_ProjectX):
def __init__(self):
super()
super().__init__()
def demographic_analytic_steps(self):
self.import_parent_ref_data()
self.import_master_data()
self.recategorize_var(on_switch=True)
self.result_in_plaintext(some_text='This is done', on_switch=True)
self.result_in_csv(on_switch=True)
# Decorators
def on_or_off(func):
def wrapper(self, on_switch, *args):
if on_switch:
func(self, on_switch, *args)
return wrapper
# Core class functions
@on_or_off
def recategorize_var(self, on_switch=False):
self.df_master_filtered = self.recat_binary(self.df_master_filtered, 'INDEX_RURAL', 'INDEX_RURAL_CAT', 0, 'URBAN', 1, 'RURAL')
self.df_master_filtered = self.recat_age(self.df_master_filtered, 'INDEX_AGE', 'INDEX_AGE_CAT')
@on_or_off
def result_in_plaintext(self, some_text, on_switch=False):
df_dict = {
'TxGroup':self.df_master_filtered,
}
for df_key, df in df_dict.items():
print ('Dataset name: {}'.format(df_key))
print ('Unique patients, n: {}'.format(df['PHN_ENC'].nunique()))
self.descriptive_num_var_results(df_key, df, 'INDEX_AGE')
self.descriptive_cat_var_results(df_key, df, 'INDEX_AGE_CAT')
self.descriptive_cat_var_results(df_key, df, 'INDEX_RURAL_CAT')
self.descriptive_cat_var_results(df_key, df, 'INDEX_SEX')
print(some_text)
@on_or_off
def result_in_csv(self, on_switch=False):
pass
# Helper functions
def recat_binary(self, df, old_var, new_var, old_val1, new_val1, old_val2, new_val2):
df.loc[df[old_var] == old_val1, new_var] = new_val1
df.loc[df[old_var] == old_val2, new_var] = new_val2
return df
def recat_age(self, df, old_var, new_var):
df.loc[(df[old_var]>=19.00)&(df[old_var]<25.00), new_var] = '19-24'
df.loc[(df[old_var]>=25.00)&(df[old_var]<30.00), new_var] = '25-29'
df.loc[(df[old_var]>=30.00)&(df[old_var]<35.00), new_var] = '30-34'
df.loc[(df[old_var]>=35.00)&(df[old_var]<40.00), new_var] = '35-39'
df.loc[(df[old_var]>=40.00)&(df[old_var]<45.00), new_var] = '40-44'
df.loc[(df[old_var]>=45.00)&(df[old_var]<50.00), new_var] = '45-49'
df.loc[(df[old_var]>=50.00)&(df[old_var]<55.00), new_var] = '50-54'
df.loc[(df[old_var]>=55.00)&(df[old_var]<60.00), new_var] = '55-59'
df.loc[(df[old_var]>=60.00)&(df[old_var]<65.00), new_var] = '60-64'
df.loc[(df[old_var]>=65.00)&(df[old_var]<300.00), new_var] = '65/above'
return df
x = Analysis_ProjectX_Demographic()
x.demographic_analytic_steps()
它给出了此错误:
line 16, in demographic_analytic_steps
self.result_in_plaintext(some_text='This is done', on_switch=True)
TypeError: wrapper() got an unexpected keyword argument 'some_text'
答案 0 :(得分:1)
您在*args
函数中使用的wrapper
参数仅支持作为位置参数传入的其他参数。它不支持任意关键字参数。如果要匹配关键字参数,则需要使用**kwargs
(代替*args
或除some_text
之外)。否则,您需要更改调用函数的方式,以将*args
作为位置参数而不是关键字参数传递。
请注意,位置参数的顺序很重要!您需要将on_switch
放在其他位置参数之后的参数列表中,这意味着*args
必须是第一个参数,而不是第二个参数(如果要在位置上传递它们)。这是支持关键字参数的原因之一,因为它们的顺序无关紧要。您甚至可以创建仅关键字参数,方法是将它们放在函数声明中的*
参数之后(或者如果不需要{,则单独放在*args
之后) {1}}。如果您想获得最一般的支持,我建议:
# Decorators
def on_or_off(func):
def wrapper(self, *args, on_switch, **kwargs): # on_switch is keyword only now!
if on_switch:
func(self, *args, on_switch=on_switch, **kwargs) # note you may want to return here
return wrapper
答案 1 :(得分:1)
class MyClass:
def on_or_off(func):
def wrapper(self,*args, **kwargs):
if kwargs['on_switch']:
func(**kwargs)
return wrapper
@on_or_off
def test(on_switch = False,some_text="This is done"):
print(f' "Test" Function executed with on_switch = {on_switch} and some_text {some_text}')
obj = MyClass()
obj.test(on_switch = True, some_text="Abhijeet")