所以我用tree
包在R中建立了一个决策树,并在该树上运行summary()函数会给我:
Classification tree:
tree(formula = High temperature ~ ., data = summer.train)
Variables actually used in tree construction:
[1] "Humidity" "Cloudy" "Airy" "Dry"
"Windy"
Number of terminal nodes: 12
Residual mean deviance: 0.3874 = 377.7 / 975
Misclassification error rate: 0.08909 = 89 / 999
我想根据上面的汇总函数获取树结构使用的变量“ airy”,“ dry”等。我有什么办法吗?
答案 0 :(得分:0)
因此它是链接到:
实际上,该解决方案对我有用,我使用了著名的垃圾邮件数据集对其进行了测试:
library(kernlab)
library(tree)
data(spam)
spam_tree_def <- tree(type~.,data=spam)
summary(spam_tree_def)
汇总结果:
Classification tree:
tree(formula = type ~ ., data = spam)
Variables actually used in tree construction:
[1] "charDollar" "remove" "charExclamation" "hp" "capitalLong" "our"
[7] "capitalAve" "free" "george" "edu"
Number of terminal nodes: 13
Residual mean deviance: 0.4879 = 2238 / 4588
Misclassification error rate: 0.08259 = 380 / 4601
提取所需内容的方法:
as.character(summary(spam_tree_def)$used)
[1] "charDollar" "remove" "charExclamation" "hp" "capitalLong" "our"
[7] "capitalAve" "free" "george" "edu"