决策树在树决策中保持使用Y变量

时间:2016-02-29 06:38:28

标签: r tree classification decision-tree

我使用C5.0制作决策树,并在树中使用我的类标签。我的数据片段如下。

trainX

V1                V2     V3         V4 V5                  V6
1 39         State-gov  77516  Bachelors 13       Never-married
2 50  Self-emp-not-inc  83311  Bachelors 13  Married-civ-spouse
3 38           Private 215646    HS-grad  9            Divorced
4 53           Private 234721       11th  7  Married-civ-spouse
5 28           Private 338409  Bachelors 13  Married-civ-spouse
          V7             V8     V9     V10  V11 V12 V13            V14
1       Adm-clerical  Not-in-family  White    Male 2174   0  40  United-States
2    Exec-managerial        Husband  White    Male    0   0  13  United-States
3  Handlers-cleaners  Not-in-family  White    Male    0   0  40  United-States
4  Handlers-cleaners        Husband  Black    Male    0   0  40  United-States
5     Prof-specialty           Wife  Black  Female    0   0  40           Cuba

trainY

[1]  <=50K  <=50K  <=50K  <=50K  <=50K

我的数据中也有&gt; 50K的情况,这个5的片段不包含任何内容。

当我创建树时,这是我使用的代码

library(C50)

trainX = X[1:100,]
trainY = Y[1:100]
testX = X[101:150,]
testY = Y[101:150]

model = C5.0(trainX, trainY)
summary(model)

我得到的输出是......

Decision tree:
 <=50K (100/25)

评估训练数据(100例):

    Decision Tree   
  ----------------  
  Size      Errors  

     1   25(25.0%)   <<


   (a)   (b)    <-classified as
  ----  ----
    75          (a): class <=50K
    25          (b): class >50K

我使用分类作为树的一部分,我做错了什么?

编辑 - 头部以下的DPUTS。仍然给了我同样的问题,它使用拆分为&lt; = 50K或&gt; 50K制作决策树,这是我的&#34; Y&#34;输出,因此不应该成为决策过程的一部分。

trainX

structure(list(V1 = c(39L, 50L, 38L, 53L, 28L, 37L), V2 = structure(c(8L, 
7L, 5L, 5L, 5L, 5L), .Label = c(" ?", " Federal-gov", " Local-gov", 
" Never-worked", " Private", " Self-emp-inc", " Self-emp-not-inc", 
" State-gov", " Without-pay"), class = "factor"), V3 = c(77516L, 
83311L, 215646L, 234721L, 338409L, 284582L), V4 = structure(c(10L, 
10L, 12L, 2L, 10L, 13L), .Label = c(" 10th", " 11th", " 12th", 
" 1st-4th", " 5th-6th", " 7th-8th", " 9th", " Assoc-acdm", " Assoc-voc", 
" Bachelors", " Doctorate", " HS-grad", " Masters", " Preschool", 
" Prof-school", " Some-college"), class = "factor"), V5 = c(13L, 
13L, 9L, 7L, 13L, 14L), V6 = structure(c(5L, 3L, 1L, 3L, 3L, 
3L), .Label = c(" Divorced", " Married-AF-spouse", " Married-civ-spouse", 
" Married-spouse-absent", " Never-married", " Separated", " Widowed"
), class = "factor"), V7 = structure(c(2L, 5L, 7L, 7L, 11L, 5L
), .Label = c(" ?", " Adm-clerical", " Armed-Forces", " Craft-repair", 
" Exec-managerial", " Farming-fishing", " Handlers-cleaners", 
" Machine-op-inspct", " Other-service", " Priv-house-serv", " Prof-specialty", 
" Protective-serv", " Sales", " Tech-support", " Transport-moving"
), class = "factor"), V8 = structure(c(2L, 1L, 2L, 1L, 6L, 6L
), .Label = c(" Husband", " Not-in-family", " Other-relative", 
" Own-child", " Unmarried", " Wife"), class = "factor"), V9 = structure(c(5L, 
5L, 5L, 3L, 3L, 5L), .Label = c(" Amer-Indian-Eskimo", " Asian-Pac-Islander", 
" Black", " Other", " White"), class = "factor"), V10 = structure(c(2L, 
2L, 2L, 2L, 1L, 1L), .Label = c(" Female", " Male"), class = "factor"), 
    V11 = c(2174L, 0L, 0L, 0L, 0L, 0L), V12 = c(0L, 0L, 0L, 0L, 
    0L, 0L), V13 = c(40L, 13L, 40L, 40L, 40L, 40L), V14 = structure(c(40L, 
    40L, 40L, 40L, 6L, 40L), .Label = c(" ?", " Cambodia", " Canada", 
    " China", " Columbia", " Cuba", " Dominican-Republic", " Ecuador", 
    " El-Salvador", " England", " France", " Germany", " Greece", 
    " Guatemala", " Haiti", " Holand-Netherlands", " Honduras", 
    " Hong", " Hungary", " India", " Iran", " Ireland", " Italy", 
    " Jamaica", " Japan", " Laos", " Mexico", " Nicaragua", " Outlying-US(Guam-USVI-etc)", 
    " Peru", " Philippines", " Poland", " Portugal", " Puerto-Rico", 
    " Scotland", " South", " Taiwan", " Thailand", " Trinadad&Tobago", 
    " United-States", " Vietnam", " Yugoslavia"), class = "factor")), .Names = c("V1", 
"V2", "V3", "V4", "V5", "V6", "V7", "V8", "V9", "V10", "V11", 
"V12", "V13", "V14"), row.names = c(NA, 6L), class = "data.frame")

trainY

structure(c(1L, 1L, 1L, 1L, 1L, 1L), .Label = c(" <=50K", " >50K"
), class = "factor")

在trainX,trainY中读完后,重现此问题的最简单方法就是

library(C50)
test = C5.0(x=trainX, y=trainY)

我的实际火车Y:

structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 1L, 
1L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 1L, 2L, 1L, 2L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 
2L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 2L, 1L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 2L, 1L, 1L, 2L, 1L, 1L, 1L, 
1L, 2L, 1L, 2L, 2L, 1L, 1L), .Label = c(" <=50K", " >50K"), class = "factor")

我的实际火车X

structure(list(age = c(39L, 50L, 38L, 53L, 28L, 37L, 49L, 52L, 
31L, 42L, 37L, 30L, 23L, 32L, 40L, 34L, 25L, 32L, 38L, 43L, 40L, 
54L, 35L, 43L, 59L, 56L, 19L, 54L, 39L, 49L, 23L, 20L, 45L, 30L, 
22L, 48L, 21L, 19L, 31L, 48L, 31L, 53L, 24L, 49L, 25L, 57L, 53L, 
44L, 41L, 29L, 25L, 18L, 47L, 50L, 47L, 43L, 46L, 35L, 41L, 30L, 
30L, 32L, 48L, 42L, 29L, 36L, 28L, 53L, 49L, 25L, 19L, 31L, 29L, 
23L, 79L, 27L, 40L, 67L, 18L, 31L, 18L, 52L, 46L, 59L, 44L, 53L, 
49L, 33L, 30L, 43L, 57L, 37L, 28L, 30L, 34L, 29L, 48L, 37L, 48L, 
32L), workClass = structure(c(8L, 7L, 5L, 5L, 5L, 5L, 5L, 7L, 
5L, 5L, 5L, 8L, 5L, 5L, 5L, 5L, 7L, 5L, 5L, 7L, 5L, 5L, 2L, 5L, 
5L, 3L, 5L, 1L, 5L, 5L, 3L, 5L, 5L, 2L, 8L, 5L, 5L, 5L, 5L, 7L, 
5L, 7L, 5L, 5L, 5L, 2L, 5L, 5L, 8L, 5L, 5L, 5L, 5L, 2L, 6L, 5L, 
5L, 5L, 5L, 5L, 5L, 1L, 5L, 5L, 5L, 5L, 5L, 5L, 6L, 1L, 5L, 5L, 
7L, 5L, 5L, 5L, 5L, 1L, 5L, 3L, 5L, 5L, 5L, 5L, 5L, 5L, 3L, 5L, 
5L, 2L, 5L, 5L, 5L, 5L, 3L, 3L, 7L, 5L, 5L, 2L), .Label = c(" ?", 
" Federal-gov", " Local-gov", " Never-worked", " Private", " Self-emp-inc", 
" Self-emp-not-inc", " State-gov", " Without-pay"), class = "factor"), 
    fnlwgt = c(77516L, 83311L, 215646L, 234721L, 338409L, 284582L, 
    160187L, 209642L, 45781L, 159449L, 280464L, 141297L, 122272L, 
    205019L, 121772L, 245487L, 176756L, 186824L, 28887L, 292175L, 
    193524L, 302146L, 76845L, 117037L, 109015L, 216851L, 168294L, 
    180211L, 367260L, 193366L, 190709L, 266015L, 386940L, 59951L, 
    311512L, 242406L, 197200L, 544091L, 84154L, 265477L, 507875L, 
    88506L, 172987L, 94638L, 289980L, 337895L, 144361L, 128354L, 
    101603L, 271466L, 32275L, 226956L, 51835L, 251585L, 109832L, 
    237993L, 216666L, 56352L, 147372L, 188146L, 59496L, 293936L, 
    149640L, 116632L, 105598L, 155537L, 183175L, 169846L, 191681L, 
    200681L, 101509L, 309974L, 162298L, 211678L, 124744L, 213921L, 
    32214L, 212759L, 309634L, 125927L, 446839L, 276515L, 51618L, 
    159937L, 343591L, 346253L, 268234L, 202051L, 54334L, 410867L, 
    249977L, 286730L, 212563L, 117747L, 226296L, 115585L, 191277L, 
    202683L, 171095L, 249409L), education = structure(c(10L, 
    10L, 12L, 2L, 10L, 13L, 7L, 12L, 13L, 10L, 16L, 10L, 10L, 
    8L, 9L, 6L, 12L, 12L, 2L, 13L, 11L, 12L, 7L, 2L, 12L, 10L, 
    12L, 16L, 12L, 12L, 8L, 16L, 10L, 16L, 16L, 2L, 16L, 12L, 
    16L, 8L, 7L, 10L, 10L, 12L, 12L, 10L, 12L, 13L, 9L, 9L, 16L, 
    12L, 15L, 10L, 12L, 16L, 5L, 9L, 12L, 12L, 10L, 6L, 12L, 
    11L, 16L, 12L, 16L, 12L, 16L, 16L, 16L, 10L, 10L, 16L, 16L, 
    12L, 8L, 1L, 2L, 6L, 12L, 10L, 12L, 12L, 12L, 12L, 12L, 13L, 
    7L, 11L, 9L, 16L, 16L, 12L, 10L, 16L, 11L, 16L, 8L, 12L), .Label = c(" 10th", 
    " 11th", " 12th", " 1st-4th", " 5th-6th", " 7th-8th", " 9th", 
    " Assoc-acdm", " Assoc-voc", " Bachelors", " Doctorate", 
    " HS-grad", " Masters", " Preschool", " Prof-school", " Some-college"
    ), class = "factor"), educationNum = c(13L, 13L, 9L, 7L, 
    13L, 14L, 5L, 9L, 14L, 13L, 10L, 13L, 13L, 12L, 11L, 4L, 
    9L, 9L, 7L, 14L, 16L, 9L, 5L, 7L, 9L, 13L, 9L, 10L, 9L, 9L, 
    12L, 10L, 13L, 10L, 10L, 7L, 10L, 9L, 10L, 12L, 5L, 13L, 
    13L, 9L, 9L, 13L, 9L, 14L, 11L, 11L, 10L, 9L, 15L, 13L, 9L, 
    10L, 3L, 11L, 9L, 9L, 13L, 4L, 9L, 16L, 10L, 9L, 10L, 9L, 
    10L, 10L, 10L, 13L, 13L, 10L, 10L, 9L, 12L, 6L, 7L, 4L, 9L, 
    13L, 9L, 9L, 9L, 9L, 9L, 14L, 5L, 16L, 11L, 10L, 10L, 9L, 
    13L, 10L, 16L, 10L, 12L, 9L), marital = structure(c(5L, 3L, 
    1L, 3L, 3L, 3L, 4L, 3L, 5L, 3L, 3L, 3L, 5L, 5L, 3L, 3L, 5L, 
    5L, 3L, 1L, 3L, 6L, 3L, 3L, 1L, 3L, 5L, 3L, 1L, 3L, 5L, 5L, 
    1L, 3L, 3L, 5L, 5L, 2L, 3L, 3L, 3L, 3L, 3L, 6L, 5L, 3L, 3L, 
    1L, 3L, 5L, 3L, 5L, 3L, 1L, 1L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 
    3L, 3L, 1L, 3L, 1L, 3L, 3L, 5L, 5L, 6L, 3L, 5L, 3L, 5L, 3L, 
    3L, 5L, 3L, 5L, 3L, 3L, 3L, 1L, 1L, 3L, 3L, 5L, 5L, 3L, 1L, 
    1L, 3L, 3L, 5L, 3L, 3L, 1L, 5L), .Label = c(" Divorced", 
    " Married-AF-spouse", " Married-civ-spouse", " Married-spouse-absent", 
    " Never-married", " Separated", " Widowed"), class = "factor"), 
    occ = structure(c(2L, 5L, 7L, 7L, 11L, 5L, 9L, 5L, 11L, 5L, 
    5L, 11L, 2L, 13L, 4L, 15L, 6L, 8L, 13L, 5L, 11L, 9L, 6L, 
    15L, 14L, 14L, 4L, 1L, 5L, 4L, 12L, 13L, 5L, 2L, 9L, 8L, 
    8L, 2L, 13L, 11L, 8L, 11L, 14L, 2L, 7L, 11L, 8L, 5L, 4L, 
    11L, 5L, 9L, 11L, 5L, 5L, 14L, 8L, 9L, 2L, 8L, 13L, 1L, 15L, 
    11L, 14L, 4L, 2L, 2L, 5L, 1L, 11L, 13L, 13L, 8L, 11L, 9L, 
    2L, 1L, 9L, 6L, 13L, 9L, 9L, 13L, 4L, 13L, 12L, 11L, 13L, 
    11L, 11L, 4L, 8L, 13L, 12L, 7L, 11L, 13L, 5L, 9L), .Label = c(" ?", 
    " Adm-clerical", " Armed-Forces", " Craft-repair", " Exec-managerial", 
    " Farming-fishing", " Handlers-cleaners", " Machine-op-inspct", 
    " Other-service", " Priv-house-serv", " Prof-specialty", 
    " Protective-serv", " Sales", " Tech-support", " Transport-moving"
    ), class = "factor"), relationship = structure(c(2L, 1L, 
    2L, 1L, 6L, 6L, 2L, 1L, 2L, 1L, 1L, 1L, 4L, 2L, 1L, 1L, 4L, 
    5L, 1L, 5L, 1L, 5L, 1L, 1L, 5L, 1L, 4L, 1L, 2L, 1L, 2L, 4L, 
    4L, 4L, 1L, 5L, 4L, 6L, 1L, 1L, 1L, 1L, 1L, 5L, 2L, 1L, 1L, 
    5L, 1L, 2L, 6L, 4L, 6L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 
    1L, 1L, 2L, 1L, 2L, 6L, 1L, 4L, 4L, 4L, 1L, 2L, 3L, 4L, 1L, 
    1L, 4L, 1L, 2L, 1L, 6L, 1L, 2L, 4L, 1L, 1L, 2L, 2L, 1L, 5L, 
    5L, 6L, 1L, 2L, 1L, 1L, 5L, 4L), .Label = c(" Husband", " Not-in-family", 
    " Other-relative", " Own-child", " Unmarried", " Wife"), class = "factor"), 
    race = structure(c(5L, 5L, 5L, 3L, 3L, 5L, 3L, 5L, 5L, 5L, 
    3L, 2L, 5L, 3L, 2L, 1L, 5L, 5L, 5L, 5L, 5L, 3L, 3L, 5L, 5L, 
    5L, 5L, 2L, 5L, 5L, 5L, 3L, 5L, 5L, 3L, 5L, 5L, 5L, 5L, 5L, 
    5L, 5L, 5L, 5L, 5L, 3L, 5L, 5L, 5L, 5L, 4L, 5L, 5L, 5L, 5L, 
    5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 
    5L, 3L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 
    5L, 5L, 5L, 5L, 5L, 5L, 5L, 3L, 2L, 5L, 5L, 5L, 5L, 5L, 3L
    ), .Label = c(" Amer-Indian-Eskimo", " Asian-Pac-Islander", 
    " Black", " Other", " White"), class = "factor"), sex = structure(c(2L, 
    2L, 2L, 2L, 1L, 1L, 1L, 2L, 1L, 2L, 2L, 2L, 1L, 2L, 2L, 2L, 
    2L, 2L, 2L, 1L, 2L, 1L, 2L, 2L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 
    2L, 2L, 2L, 2L, 2L, 2L, 1L, 2L, 2L, 2L, 2L, 2L, 1L, 2L, 2L, 
    2L, 1L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
    2L, 2L, 2L, 2L, 2L, 1L, 1L, 2L, 2L, 2L, 1L, 2L, 2L, 2L, 2L, 
    2L, 2L, 1L, 2L, 2L, 2L, 1L, 2L, 1L, 1L, 2L, 2L, 2L, 1L, 2L, 
    1L, 1L, 1L, 2L, 2L, 2L, 2L, 1L, 2L), .Label = c(" Female", 
    " Male"), class = "factor"), capGain = c(2174L, 0L, 0L, 0L, 
    0L, 0L, 0L, 0L, 14084L, 5178L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 
    0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 
    0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 
    0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 5013L, 2407L, 
    0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 
    0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 14344L, 0L, 0L, 0L, 0L, 0L, 
    0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L), capLoss = c(0L, 
    0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 
    0L, 0L, 0L, 0L, 0L, 0L, 0L, 2042L, 0L, 0L, 0L, 0L, 0L, 0L, 
    0L, 0L, 1408L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 
    0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1902L, 0L, 0L, 0L, 0L, 0L, 
    0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 
    0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 
    0L, 0L, 0L, 0L, 0L, 1573L, 0L, 0L, 1902L, 0L, 0L, 0L), hours = c(40L, 
    13L, 40L, 40L, 40L, 40L, 16L, 45L, 50L, 40L, 80L, 40L, 30L, 
    50L, 40L, 45L, 35L, 40L, 50L, 45L, 60L, 20L, 40L, 40L, 40L, 
    40L, 40L, 60L, 80L, 40L, 52L, 44L, 40L, 40L, 15L, 40L, 40L, 
    25L, 38L, 40L, 43L, 40L, 50L, 40L, 35L, 40L, 38L, 40L, 40L, 
    43L, 40L, 30L, 60L, 55L, 60L, 40L, 40L, 40L, 48L, 40L, 40L, 
    40L, 40L, 45L, 58L, 40L, 40L, 40L, 50L, 40L, 32L, 40L, 70L, 
    40L, 20L, 40L, 40L, 2L, 22L, 40L, 30L, 40L, 40L, 48L, 40L, 
    35L, 40L, 50L, 40L, 50L, 40L, 40L, 25L, 35L, 40L, 50L, 60L, 
    48L, 40L, 40L), country = structure(c(40L, 40L, 40L, 40L, 
    6L, 40L, 24L, 40L, 40L, 40L, 40L, 20L, 40L, 40L, 1L, 27L, 
    40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 36L, 
    40L, 40L, 40L, 40L, 40L, 40L, 40L, 34L, 40L, 40L, 1L, 40L, 
    40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 1L, 
    17L, 40L, 40L, 40L, 27L, 34L, 40L, 40L, 40L, 1L, 40L, 40L, 
    40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 27L, 
    40L, 40L, 40L, 40L, 40L, 6L, 40L, 40L, 40L, 40L, 40L, 40L, 
    40L, 40L, 40L, 40L, 40L, 1L, 40L, 40L, 40L, 40L, 10L, 40L
    ), .Label = c(" ?", " Cambodia", " Canada", " China", " Columbia", 
    " Cuba", " Dominican-Republic", " Ecuador", " El-Salvador", 
    " England", " France", " Germany", " Greece", " Guatemala", 
    " Haiti", " Holand-Netherlands", " Honduras", " Hong", " Hungary", 
    " India", " Iran", " Ireland", " Italy", " Jamaica", " Japan", 
    " Laos", " Mexico", " Nicaragua", " Outlying-US(Guam-USVI-etc)", 
    " Peru", " Philippines", " Poland", " Portugal", " Puerto-Rico", 
    " Scotland", " South", " Taiwan", " Thailand", " Trinadad&Tobago", 
    " United-States", " Vietnam", " Yugoslavia"), class = "factor")), .Names = c("age", 
"workClass", "fnlwgt", "education", "educationNum", "marital", 
"occ", "relationship", "race", "sex", "capGain", "capLoss", "hours", 
"country"), row.names = c(NA, 100L), class = "data.frame")

1 个答案:

答案 0 :(得分:1)

您提供的代码构造了一个1级(<=50k)的因子,因为第一个向量输入仅包含1L s。您应该相应地分配这些标签,或者使用更简单的方法来构建您的响应变量 - 例如trainY <- as.factor(...) 我改变了trainY的构建方式:

y <- structure(c(1L, 2L, 1L, 1L, 2L, 1L), .Label = c(" <=50K", " >50K"), class = "factor")

并且在使用相同的命令重新训练树之后:

Decision tree:

V14 = Cuba: >50K (1)
V14 in {?,Cambodia,Canada,China,Columbia,Dominican-Republic,Ecuador,
    El-Salvador,England,France,Germany,Greece,Guatemala,Haiti,
    Holand-Netherlands,Honduras,Hong,Hungary,India,Iran,Ireland,Italy,
    Jamaica,Japan,Laos,Mexico,Nicaragua,Outlying-US(Guam-USVI-etc),Peru,
    Philippines,Poland,Portugal,Puerto-Rico,Scotland,South,Taiwan,Thailand,
    Trinadad&Tobago,United-States,Vietnam,Yugoslavia}: <=50K (5/1)

将args传递给C5.0时,请确保响应中没有一个类。 HTH

<强>更新
在绘制了一些预测变量与响应之后,我注意到educationeducationNum显示了数据中最清晰的分割(Doctorate立即暗示>50K)。下一步是调整一些非常有用的C5.0 Control选项 - 它们在C5.0 package documentation和官方非正式tutorial page中有详细记录 - 检查它们会给你带来广泛的帮助控制分类控制。
例如:

C5.0(x = trainX,y = trainY,control = C5.0Control(subset = T, winnow = T,minCases = 4,fuzzyThreshold = T))

Decision tree:

educationNum <= 13 (14.5): <=50K (95/20)
educationNum >= 16 (14.5): >50K (5)

类似地,做一些“特征工程”,在这种情况下意味着只留下原始数据框中的一些列:

C5.0(x = trainX[ ,c(1:5, 9:13)], y = trainY)

Decision tree:

educationNum <= 14: <=50K (95/20)
educationNum > 14: >50K (5)

我相信没有一个通用的“开箱即用”C5.0默认设置可以为各种问题产生令人满意的结果,所以它真的归结为尝试不同的参数设置,功能等。 ..但与所有事物R一样,周围有很多材料可以给你一些方向。