我有一个包含4个列A,B,C和D的数据框df
我想将这些列的每种组合都加倍。
到目前为止,我有
columns=[A,B,C,D]
a= combinations(columns)
for i in a:
df[outname]=df[a].multiply()
但是显然这是不正确的。
谁能看到一个好方法?
输出:
A B C D AB AC AD BC ABC and so on
0
1
2
3
4
6
7
答案 0 :(得分:5)
使用this中的函数查找所有组合,并在列表理解中创建值的所有乘积:
var maxNumberOfOccurences= modeList.GroupBy(x => x).Select(x => x.Count()).OrderByDescending(x => x).First();
答案 1 :(得分:2)
使用:
AB AC AD BA BC BD CA CB CD DA DB DC
0 20 35 5 20 28 4 35 28 7 5 4 7
1 15 24 9 15 40 15 24 40 24 9 15 24
2 24 54 30 24 36 20 54 36 45 30 20 45
3 45 36 63 45 20 35 36 20 28 63 35 28
4 10 4 2 10 10 5 4 10 2 2 5 2
5 16 12 0 16 12 0 12 12 0 0 0 0
<line-one>
<div *ngFor="let hero of heroes">
<div *ngIf= hero.name == BatMan> <bat-man-comp/> <div>
<div *ngIf= hero.name == SuperMan> <super-man-comp/> <div>
<div *ngIf= hero.name == SpiderMan> <spider-man-comp/> <div>
</div>
<line-one>
<line-two>
<div *ngFor="let hero of heroes">
<div *ngIf= hero.name == BatMan> <bat-man-comp/> <div>
<div *ngIf= hero.name == SuperMan> <super-man-comp/> <div>
<div *ngIf= hero.name == SpiderMan> <spider-man-comp/> <div>
</div>
<line-two>
答案 2 :(得分:1)
您可以生成具有不同大小的组合列表。
import itertools
l=[] # final list
ll = list('ABCD') # list of letters
for L in range(0, len(ll)+1):
for subset in itertools.combinations(ll, L):
l.append(''.join(subset))
del(l[0]) # remove the empty string ''
print(l)
['A', 'B', 'C', 'D', 'AB', 'AC', 'AD', 'BC', 'BD', 'CD', 'ABC', 'ABD', 'ACD', 'BCD', 'ABCD']
您可以像这样使用数据框:
df = pd.DataFrame({
'A':[5,3,6,9,2,4],
'B':[4,5,4,5,5,4],
'C':[7,8,9,4,2,3],
'D':[1,3,5,7,1,0],
})
然后您可以使用以下代码:
l=['A', 'B', 'C', 'D', 'AB', 'AC', 'AD', 'BC', 'BD', 'CD', 'ABC', 'ABD', 'ACD', 'BCD', 'ABCD']
for i in l:
if(len(i)>1):
df[i]=1 # set the initial value to 1
for i in l:
if(len(i)>1):
plets=list(i)
for p in plets:
df[i]*=df[p] #makes the product based on columns name disolver
print(df)
A B C D AB AC AD BC BD CD ABC ABD ACD BCD ABCD
0 5 4 7 1 20 35 5 28 4 7 140 20 35 28 140
1 3 5 8 3 15 24 9 40 15 24 120 45 72 120 360
2 6 4 9 5 24 54 30 36 20 45 216 120 270 180 1080
3 9 5 4 7 45 36 63 20 35 28 180 315 252 140 1260
4 2 5 2 1 10 4 2 10 5 2 20 10 4 10 20
5 4 4 3 0 16 12 0 12 0 0 48 0 0 0 0
答案 3 :(得分:1)
使用组合和链使列成多列,然后使用DataFrame.eval
:
comb_list = list(chain.from_iterable([list(combinations(df.columns, i)) for i in range(2, len(df.columns)+1)]))
#method 1
for comb in comb_list:
df[''.join(comb)] = df.eval('*'.join(comb))
#method 2
df = pd.concat([df]+[pd.DataFrame(df.eval('*'.join(comb)),
columns=[''.join(comb)]) for comb in comb_list], 1)
print(df)
A B C D AB AC AD BC BD CD ABC ABD ACD BCD ABCD
0 5 4 7 1 20 35 5 28 4 7 140 20 35 28 140
1 3 5 8 3 15 24 9 40 15 24 120 45 72 120 360
2 6 4 9 5 24 54 30 36 20 45 216 120 270 180 1080
3 9 5 4 7 45 36 63 20 35 28 180 315 252 140 1260
4 2 5 2 1 10 4 2 10 5 2 20 10 4 10 20
5 4 4 3 0 16 12 0 12 0 0 48 0 0 0 0