仅使用Float32 dtype过滤熊猫数据框

时间:2019-05-20 22:55:20

标签: python pandas

我有这种方法,我只需要将其应用于'float32'而不是所有列的列。

def preprocess(self, dataframe):
    if self._means is None: 
      self._means = np.mean(dataframe, axis=0)

    if self._stds is None:
      self._stds = np.std(dataframe, axis=0)
      if not self._stds.all():
        raise ValueError('At least one column has std deviation of 0.')

    return (dataframe - self._means) / self._stds

我收集了这样的类型,但是正在寻找Pythonic的方式:

dtypes = list(zip(dataframe.dtypes.index, map(str, dataframe.dtypes)))
# Normalize numeric columns.
 for column, dtype in dtypes:
    if dtype == 'float32':

2 个答案:

答案 0 :(得分:2)

pandas方法将首先使用columns提取数字select_dtypes

subdf= df.select_dtypes(include='float32') 
subdf=subdf.apply(preprocess,axis=1)
df[list(subdf)]=subdf 

答案 1 :(得分:1)

您可以创建一系列float32类型的列,如下所示:

cols = dataframe.columns[dataframe.dtypes == 'float32']

然后将它们传递给您的函数:

dataframe[cols].apply(preprocess)