Python:对循环中的矩阵乘法进行矢量化处理?

时间:2019-05-17 14:43:51

标签: python numpy vectorization

我有一个N-M数组,在每个数组中,我需要执行一些NumPy运算并将结果放在那里。

现在,我正在通过双循环来进行天真的操作:

import numpy as np

N = 10
M = 11
K = 100

result = np.zeros((N, M))

is_relevant = np.random.rand(N, M, K) > 0.5
weight = np.random.rand(3, 3, K)
values1 = np.random.rand(3, 3, K)
values2 = np.random.rand(3, 3, K)

for i in range(N):
    for j in range(M):
        selector = is_relevant[i, j, :]
        result[i, j] = np.sum(
            np.multiply(
                np.multiply(
                    values1[..., selector],
                    values2[..., selector]
                ), weight[..., selector]
            )
        )

由于所有的循环操作都只是NumPy操作,因此我认为必须有一种更快或更无循环的方法。

2 个答案:

答案 0 :(得分:3)

我们可以结合使用np.einsumnp.tensordot-

a = np.einsum('ijk,ijk,ijk->k',values1,values2,weight)
out = np.tensordot(a,is_relevant,axes=(0,2))

或者,一次致电einsum-

np.einsum('ijk,ijk,ijk,lmk->lm',values1,values2,weight,is_relevant)

使用np.doteinsum-

is_relevant.dot(np.einsum('ijk,ijk,ijk->k',values1,values2,weight))

另外,通过将其设置为optimize以使用BLAS,在np.einsum中使用True标志。

时间-

In [146]: %%timeit
     ...: a = np.einsum('ijk,ijk,ijk->k',values1,values2,weight)
     ...: out = np.tensordot(a,is_relevant,axes=(0,2))
10000 loops, best of 3: 121 µs per loop

In [147]: %timeit np.einsum('ijk,ijk,ijk,lmk->lm',values1,values2,weight,is_relevant)
1000 loops, best of 3: 851 µs per loop

In [148]: %timeit np.einsum('ijk,ijk,ijk,lmk->lm',values1,values2,weight,is_relevant,optimize=True)
1000 loops, best of 3: 347 µs per loop

In [156]: %timeit is_relevant.dot(np.einsum('ijk,ijk,ijk->k',values1,values2,weight))
10000 loops, best of 3: 58.6 µs per loop

非常大的数组

对于非常大的数组,我们可以利用numexpr来利用multi-cores-

import numexpr as ne

a = np.einsum('ijk,ijk,ijk->k',values1,values2,weight)
out = np.empty((N, M))
for i in range(N):
    for j in range(M):
        out[i,j] = ne.evaluate('sum(is_relevant_ij*a)',{'is_relevant_ij':is_relevant[i,j], 'a':a})

答案 1 :(得分:2)

另一个非常简单的选择是:

result = (values1 * values2 * weight * is_relevant[:, :, np.newaxis, np.newaxis]).sum((2, 3, 4))

Divakar's最后的解决方案比这更快。比较时间:

%timeit np.tensordot(np.einsum('ijk,ijk,ijk->k',values1,values2,weight),is_relevant,axes=(0,2))
# 30.9 µs ± 1.71 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)
%timeit np.einsum('ijk,ijk,ijk,lmk->lm',values1,values2,weight,is_relevant)
# 379 µs ± 486 ns per loop (mean ± std. dev. of 7 runs, 1000 loops each)
%timeit np.einsum('ijk,ijk,ijk,lmk->lm',values1,values2,weight,is_relevant,optimize=True)
# 145 µs ± 1.89 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)
%timeit is_relevant.dot(np.einsum('ijk,ijk,ijk->k',values1,values2,weight))
# 15 µs ± 124 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
%timeit (values1 * values2 * weight * is_relevant[:, :, np.newaxis, np.newaxis]).sum((2, 3, 4))
# 152 µs ± 1.4 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)