n = 10
k = 20
a = 2
coef = matrix(0,nrow=20, ncol=10)
for (i in 1:1000) {
t[,i] = matrix(rnorm(n%*%a,0,1), ncol=a) # n x a
p[,i] = matrix(rnorm(k%*%a,0,1), ncol=a) # k x a
B[,i] = matrix(rnorm(k,0,0.001), nrow=k, ncol=1) # k x 1
e[,i] = matrix(rcauchy(n,location=0,scale=1), nrow=n, ncol=1)##standard cauchy
x[,i] = t%*%t(p) ## explanatary variable xi
y[,i] = (t%*%(t(p)%*%B)) + e ## response variable yi
simpls <- function(y, x, a) {
n <- nrow(x)
k <- ncol(x)
m <- NCOL(y)
y <- matrix(y)
Ps <- matrix(0, k, a)
Cs <- matrix(0, m, a)
Rs <- matrix(0, k, a)
Ts <- matrix(0, n, a)
mx <- apply(x, 2, mean)
sdx <- apply(x, 2, sd)
x <- sapply(1:k, function(i) (x[,i]-mx[i]))
my <- apply(y, 2, mean)
sdy <- apply(y, 2, sd)
y <- sapply(1:m, function(i) (y[,i]-my[i]))
S <- t(x)%*%y
Snew <- S
for (i in 1:a) {
rs <- svd(Snew)$u[,1,drop=FALSE]
rs <- rs/norm(rs,type="F")
ts <- x%*%rs
ts <- ts/norm(ts,type="F")
ps <- t(x)%*%ts
cs <- t(y)%*%ts
Rs[,i] <- rs
Ts[,i] <- ts
Ps[,i] <- ps
Cs[,i] <- cs
Snew <- Snew-Ps[,1:i]%*%solve(t(Ps[,1:i])%*%Ps[,1:i])%*%t(Ps[,1:i])%*%Snew
}
coef[,i] <- matrix(drop(Rs%*%(solve(t(Ps)%*%Rs)%*%t(Cs))))
yfit <- x%*%coef
orgyfit <- yfit+my
res <- y-yfit
SSE <- sum((y-yfit)^2)
scale <- sqrt(SSE/(n-a))
stdres <- sapply(1:m, function(i) (res[,i]-mean(res[,i]))/sqrt(var(res[,i])))
hatt <- diag(Ts%*%solve(t(Ts)%*%Ts)%*%t(Ts))
result <- list(coef=coef, fit=orgyfit, res=res, SSE=SSE,scale=scale, stdres=stdres, leverage=hatt,Ts=Ts,Rs=Rs,Ps=Ps,Cs=Cs)
}
}
print(coef)
答案 0 :(得分:0)
您只需将coef
添加到向量中即可进行每次迭代。我在这里创建了一个示例:
coef_vector <- NULL
for (i in 1:10) {
loop_coef <- i*2
coef_vector <- c(coef_vector, loop_coef)
}
结果:
> coef_vector
[1] 2 4 6 8 10 12 14 16 18 20
>
当然,如果您的变量比变量更复杂,则可以将其添加到列表中,而不是向量中。