Gcloud AI平台,无法使用自己的预测类创建模型

时间:2019-05-16 10:35:17

标签: gcloud google-cloud-ml

我尝试按照AI平台tutorial上传模型和预测例程,但是其中一部分失败了,我不明白为什么。

我的预测类与他们的教程相同:

%%writefile predictor.py
import os
import pickle

import numpy as np
from sklearn.datasets import load_iris
from sklearn.externals import joblib

class MyPredictor(object):
  def __init__(self, model, preprocessor):
    self._model = model
    self._preprocessor = preprocessor
    self._class_names = load_iris().target_names

  def predict(self, instances, **kwargs):
    inputs = np.asarray(instances)
    preprocessed_inputs = self._preprocessor.preprocess(inputs)
    if kwargs.get('probabilities'):
      probabilities = self._model.predict_proba(preprocessed_inputs)
      return probabilities.tolist()
    else:
      outputs = self._model.predict(preprocessed_inputs)
      return [self._class_names[class_num] for class_num in outputs]

  @classmethod
  def from_path(cls, model_dir):
    model_path = os.path.join(model_dir, 'model.joblib')
    model = joblib.load(model_path)

    preprocessor_path = os.path.join(model_dir, 'preprocessor.pkl')
    with open(preprocessor_path, 'rb') as f:
      preprocessor = pickle.load(f)

    return cls(model, preprocessor)

我用于在云中创建模型的代码是:

! gcloud beta ai-platform versions create {VERSION_NAME} \
  --model {MODEL_NAME} \
  --runtime-version 1.13 \
  --python-version 3.5 \
  --origin gs://{BUCKET_NAME}/custom_prediction_routine_tutorial/model/ \
  --package-uris gs://{BUCKET_NAME}/custom_prediction_routine_tutorial/my_custom_code-0.1.tar.gz \
  --prediction-class predictor.MyPredictor

但是我最终遇到了一个奇怪的错误:

ERROR: (gcloud.beta.ai-platform.versions.create) Bad model detected with error:  "Failed to load model: Unexpected error when loading the model: 'ascii' codec can't decode byte 0xf9 in position 2: ordinal not in range(128) (Error code: 0)"

问题是,当我运行相同的命令而没有:

--prediction-class predictor.MyPredictor

工作正常。

有人知道原因吗?我认为model.joblib可能有编码问题,但是我自己加载时没有错

1 个答案:

答案 0 :(得分:0)

我找到了解决方法,

在本教程中,他们使用pickle保存创建的预处理器对象,并使用Joblib保存模型。

您需要使用Joblib保存两者,然后将其发送到Google存储空间。