我有一个包含4列的数据集:Person 1
,Person 2
,Family ID
和No of mutual friends
。我想制作一个人1连接到人2的网络图。我希望边缘权重基于共同朋友的数量。我该怎么办?
我尝试将边缘的权重分配给整个共同的朋友列,但是我收到一个错误消息,说它到目前为止仅接受标量值,这与可以接受列表等的节点跟踪不同:
edge_trace = go.Scatter(
x=[],
y=[],
line=dict(width=df['No of mutual friends],color='#888'),
hoverinfo='none',
mode='lines')
>>> ValueError: Invalid value of type 'pandas.core.series.Series' received for the 'width' property of scatter.line
到目前为止,我的代码基于networkx和documentation上的plotly的this code:
import pandas as pd
import plotly.graph_objs as go
import networkx as nx
from plotly.offline import download_plotlyjs, init_notebook_mode, iplot, plot
init_notebook_mode(connected=True)
df = pd.read_csv('dataset.csv')
df.sort_values(['No of mutual friends'],ascending=False,inplace=True)
num_nodes = len(df)
# edge = df['itemset'][:num_nodes]
#create graph G
G = nx.Graph()
#G.add_nodes_from(node)
for i in range(len(df)):
G.add_weighted_edges_from([(df.Person_1[i], df.Person_2[i], df['No of mutual friends][i])])
# adjust node size according to degree, etc
d = nx.degree(G)
node_sizes = []
for i in d:
_, value = i
node_sizes.append(10*value+5)
#get a x,y position for each node
pos = nx.circular_layout(G)
#add a pos attribute to each node
for node in G.nodes:
G.nodes[node]['pos'] = list(pos[node])
pos=nx.get_node_attributes(G,'pos')
dmin=1
ncenter=0
for n in pos:
x,y=pos[n]
d=(x-0.5)**2+(y-0.5)**2
if d<dmin:
ncenter=n
dmin=d
p=nx.single_source_shortest_path_length(G,ncenter)
#Create Edges
edge_trace = go.Scatter(
x=[],
y=[],
line=dict(width=0.5,color='#888'),
hoverinfo='none',
mode='lines')
edge_trace['line'] = dict(width=0.5,color='#888')
for edge in G.edges():
x0, y0 = G.node[edge[0]]['pos']
x1, y1 = G.node[edge[1]]['pos']
edge_trace['x'] += tuple([x0, x1, None])
edge_trace['y'] += tuple([y0, y1, None])
node_trace = go.Scatter(
x=[],
y=[],
text=[],
mode='markers',
hoverinfo='text',
marker=dict(
showscale=True,
# colorscale options
#'Greys' | 'YlGnBu' | 'Greens' | 'YlOrRd' | 'Bluered' | 'RdBu' |
#'Reds' | 'Blues' | 'Picnic' | 'Rainbow' | 'Portland' | 'Jet' |
#'Hot' | 'Blackbody' | 'Earth' | 'Electric' | 'Viridis' |
colorscale='Viridis',
reversescale=True,
color=[],
size=node_sizes,
colorbar=dict(
thickness=15,
title='Node Connections',
xanchor='left',
titleside='right'
),
line=dict(width=2)))
for node in G.nodes():
x, y = G.node[node]['pos']
node_trace['x'] += tuple([x])
node_trace['y'] += tuple([y])
#add color to node points
for node, adjacencies in enumerate(G.adjacency()):
node_trace['marker']['color']+=tuple([len(adjacencies[1])])
node_info = 'Name: ' + str(adjacencies[0]) + '<br># of connections: '+str(len(adjacencies[1]))
node_trace['text']+=tuple([node_info])
fig = go.Figure(data=[edge_trace, node_trace],
layout=go.Layout(
title='<br>Network Graph of Family Relationships',
titlefont=dict(size=16),
showlegend=False,
hovermode='closest',
width=880,
height=800,
margin=dict(b=20,l=5,r=5,t=40),
annotations=[ dict(
showarrow=False,
xref="paper", yref="paper",
x=0.005, y=-0.002 ) ],
xaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
yaxis=dict(showgrid=False, zeroline=False, showticklabels=False)))
iplot(fig)