我有一对尺寸相等的矩阵Ws, Xs
和一个函数myFunc(w, x)
,该函数将两个向量作为输入。我想将此功能应用于成对的列(将其视为zip
-插入列)并将该功能映射到它们。
是否有一种非迭代的方式来做到这一点?如果Ws, Xs
的每个中只有两列,我可以做
allCols = permutedims(reshape(hcat(Ws, Xs), d, 2), [1, 3, 2])
mapslices(x -> myFunc(x[:, 1], x[:, 2]), allCols, dims=[1, 2])
但是我在移到任意列数时遇到了麻烦。
编辑:使用vcat
,正确的尺寸似乎可以解决此问题:
# assume d is column size
wxArray = reshape(vcat(Ws, Xs), 2, d) # group pairs of columns together
mapslices(x -> myFunc(x[:, 1], x[:, 2]), wxArray, dims=[1,2])
答案 0 :(得分:2)
您可以像这样使用eachcol
函数(我给出了三种方法来展示不同的方法,但是eachcol
在所有方法中都是至关重要的):
julia> Ws = rand(2,3)
2×3 Array{Float64,2}:
0.164036 0.233236 0.937968
0.724233 0.102248 0.55047
julia> Xs = rand(2,3)
2×3 Array{Float64,2}:
0.0493071 0.735849 0.643352
0.909295 0.276808 0.396145
julia> using LinearAlgebra
julia> dot.(eachcol(Ws), eachcol(Xs))
3-element Array{Float64,1}:
0.6666296397421881
0.19992972241709792
0.8215096642236619
julia> dot.(eachcol.((Ws, Xs))...)
3-element Array{Float64,1}:
0.6666296397421881
0.19992972241709792
0.8215096642236619
julia> map(dot, eachcol(Ws), eachcol(Xs))
3-element Array{Float64,1}:
0.6666296397421881
0.19992972241709792
0.8215096642236619
这需要Julia 1.1。
如果您使用的是Julia 1.0,并且确实想避免迭代而又不介意一些额外的分配(上述解决方案避免了分配),则还可以使用cat
函数(比我认为的方法要简单一些) :
julia> Ws = rand(2,3)
2×3 Array{Float64,2}:
0.975749 0.660932 0.391192
0.619872 0.278402 0.799096
julia> Xs = rand(2,3)
2×3 Array{Float64,2}:
0.0326003 0.272455 0.713046
0.389058 0.886105 0.950822
julia> mapslices(x -> (x[:,1], x[:,2]), cat(Ws, Xs; dims=3), dims=[1,3])[1,:,1]
3-element Array{Tuple{Array{Float64,1},Array{Float64,1}},1}:
([0.975749, 0.619872], [0.0326003, 0.389058])
([0.660932, 0.278402], [0.272455, 0.886105])
([0.391192, 0.799096], [0.713046, 0.950822])
当然,您也可以简单地这样做:
julia> map(i -> (Ws[:,i], Xs[:,i]), axes(Ws, 2))
3-element Array{Tuple{Array{Float64,1},Array{Float64,1}},1}:
([0.975749, 0.619872], [0.0326003, 0.389058])
([0.660932, 0.278402], [0.272455, 0.886105])
([0.391192, 0.799096], [0.713046, 0.950822])
或更喜欢:
julia> (i -> (Ws[:,i], Xs[:,i])).(axes(Ws, 2))
3-element Array{Tuple{Array{Float64,1},Array{Float64,1}},1}:
([0.975749, 0.619872], [0.0326003, 0.389058])
([0.660932, 0.278402], [0.272455, 0.886105])
([0.391192, 0.799096], [0.713046, 0.950822])