我希望在我的NN培训期间开发摘要,类似于here,但是我看到的所有示例都使用feed_dict而不是tf.data。我的培训和测试有单独的初始化程序:
self.train_init = iterator.make_initializer(train_data) # initializer for train_data
self.test_init = iterator.make_initializer(test_data) # initializer for test_data
在训练期间,我使用sess.run(self.train_init)初始化训练初始化程序,但是为了测试准确性,我相信我需要初始化sess.run(self.test_init)。目前,我的代码如下所示:
for i in range(100):
sess.run(self.train_init)
total_loss = 0
n_batches = 0
try:
while True:
_, l = sess.run([self.optimizer, self.loss])
total_loss += l
n_batches += 1
except tf.errors.OutOfRangeError:
pass
if i % (10/1) == 0:
print('Avg. loss epoch {0}: {1}'.format(i, total_loss/n_batches))
acc, summ = sess.run(self.accuracy, self.summary_op)
writer.add_summary(summ, i)
按照目前的情况,每10次迭代就测量一次精度,但是精度是使用训练批次而不是测试批次来测量的。我希望能够随着时间的推移查看训练和测试的准确性,以便清楚地查看是否发生过度拟合(训练准确性高但测试准确性差)。
我不知道在使用tf.Data时如何执行此操作。在进行100次迭代时,如何在初始化程序之间切换,同时始终创建所需的摘要?
答案 0 :(得分:3)
通常,人们会在训练过程之外评估测试集,以优化性能。但是,如果您真的想在原地完成该任务,对我来说最有效的解决方案之一就是:
代码可能类似于:
with tf.name_scope('train_pipeline'):
train_ds = tf.data.Dataset.from_tensor_slices(...)
...
train_ds = iterator.make_initializer(train_data)
train_init = iterator.initialize
X_iterator_train = iterator.get_next()
with tf.name_scope('test_pipeline'):
test_ds = tf.data.Dataset.from_tensor_slices(...)
...
test_ds = iterator.make_initializer(test_data)
test_init = iterator.initialize
X_iterator_test = iterator.get_next()
train_or_test = tf.placeholder(tf.string, name='switch_buton')
def f1(): X_iterator_train
def f2(): X_iterator_test
inputs = tf.cond(tf.equal(train_or_test, 'train'), lambda :f1(), lambda: f2(), name='input_cond')
# model
... # use your input(IteratorGetNext) at your first layer, something like tf.nn.conv2d(inputs, ...)
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
# init summary writers for two different path
train_writer = tf.summary.FileWriter(...)
test_writer = tf.summary.FileWriter(...)
for ep in range(nb_epoch):
sess.run([train_init, test_init])
# begin training
for step in range(nb_batch):
# 90% train, 10% test
if step % 9 == 0:
sess.run(train_op, feed_dict={train_or_test: 'test'}) # switch to test input pipeline
train_writer.add_summary()
else:
sess.run(train_op, feed_dict={train_or_test: 'train'}) # switch to train input pipeline
test_writer.add_summary()