使用sparklyr调用collect_list时,基于另一个变量保留订单

时间:2019-05-10 18:43:27

标签: r sparklyr

这个问题基本上是this question的重复项,除了我在R中工作。pyspark解决方案看起来很可靠,但是我无法弄清楚如何在窗口上应用collect_list在sparklyr中以相同的方式起作用。

我有一个具有以下结构的Spark DataFrame:

------------------------------
userid |     date     | city
------------------------------
   1   |  2018-08-02  |   A
   1   |  2018-08-03  |   B
   1   |  2018-08-04  |   C
   2   |  2018-08-17  |   G
   2   |  2018-08-20  |   E
   2   |  2018-08-23  |   F

我试图按userid对DataFrame进行分组,按date对每个组进行排序,然后将city列折叠成其值的串联。所需的输出:

------------------
userid | cities
------------------
   1   |  A, B, C
   2   |  G, E, F

问题在于,我尝试使用的每种方法都导致某些用户(在测试5000个用户时大约占3%)的“城市”列的排列顺序不正确。


尝试1:使用dplyrcollect_list

my_sdf %>%
  dplyr::group_by(userid) %>%
  dplyr::arrange(date) %>%
  dplyr::summarise(cities = paste(collect_list(city), sep = ", ")))

尝试2:使用replyr::gapply,因为该操作符合“ Grouped-Order-Apply”的描述。

get_cities <- . %>%
   summarise(cities = paste(collect_list(city), sep = ", "))

my_sdf %>%
  replyr::gapply(gcolumn = "userid",
                 f = get_cities,
                 ocolumn = "date",
                 partitionMethod = "group_by")

尝试3:作为SQL窗口函数编写。

my_sdf %>% 
  spark_session(sc) %>%
  sparklyr::invoke("sql", 
                   "SELECT userid, CONCAT_WS(', ', collect_list(city)) AS cities
                   OVER (PARTITION BY userid
                         ORDER BY date)
                   FROM my_sdf") %>%
  sparklyr::sdf_register() %>%
  sparklyr::sdf_copy_to(sc, ., "my_sdf", overwrite = T)

^引发以下错误:

Error: org.apache.spark.sql.catalyst.parser.ParseException: 
mismatched input 'OVER' expecting <EOF>(line 2, pos 19)

== SQL ==
SELECT userid, conversion_location, CONCAT_WS(' > ', collect_list(channel)) AS path
                   OVER (PARTITION BY userid, conversion_location
-------------------^^^
                         ORDER BY occurred_at)
                   FROM paths_model

2 个答案:

答案 0 :(得分:0)

解决了!我误解了collect_list()和Spark SQL如何一起工作。我没有意识到可以返回列表,我认为连接必须在查询中进行。以下将产生预期的结果:

spark_output <- spark_session(sc) %>%
  sparklyr::invoke("sql", 
                   "SELECT userid, collect_list(city)
                   OVER (PARTITION BY userid
                         ORDER BY date
                         ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING)
                   AS cities
                   FROM my_sdf") %>%
  sdf_register() %>%
  group_by(userid) %>%
  filter(row_number(userid) == 1) %>%
  ungroup() %>%
  mutate(cities = paste(cities, sep = " > ")) %>%
  sdf_register()

答案 1 :(得分:-1)

好:所以我承认以下解决方案根本没有效率(它使用for循环,实际上是很多代码,看起来似乎很简单,但实际上),但是我认为这应该可行:< / p>

#install.packages("tidyverse") # if needed
library(tidyverse)

df <- tribble(
  ~userid, ~date, ~city,
  1   ,  "2018-08-02"  ,   "A",
  1   ,  "2018-08-03"  ,   "B",
  1   ,  "2018-08-04"  ,   "C",
  2   ,  "2018-08-17"  ,   "G",
  2   ,  "2018-08-20"  ,   "E",
  2   ,  "2018-08-23"  ,   "F"
)

cityPerId <- df %>% 
  spread(key = date, value = city) 

toMutate <- NA
for (i in 1:nrow(cityPerId)) {
  cities <- cityPerId[i,][2:ncol(cityPerId)] %>% t() %>%
    as.vector() %>% 
    na.omit()
  collapsedCities <- paste(cities, collapse = ",")
  toMutate <- c(toMutate, collapsedCities)
}
toMutate <- toMutate[2:length(toMutate)]

final <- cityPerId %>% 
  mutate(cities = toMutate) %>% 
  select(userid, cities)