ERROR sparklyr:运行spark-apply时,网关xxxxx无法调用xxx

时间:2017-11-13 13:14:35

标签: r sparklyr

我正在尝试从sparklyr包中运行spark_apply,以对火花簇上托管的一堆数据执行kmeans聚类。但我收到一个火花错误,我很难理解。数据如下,其中features列是组合纬度和经度列的聚合向量,但在这种情况下不使用。

> samplog1
# Source:   table<sparklyr_tmp_64d4941e1a2> [?? x 6]
# Database: spark_connection
                                     id           timestamp    hr latitude longitude  features
                                  <chr>               <chr> <int>    <dbl>     <dbl>    <list>
 1 fffc68e3-866e-4be5-b1bc-5d21b89622ae 2017-10-30 04:29:59     4 1.373545  104.1265 <dbl [2]>
 2 fffc7412-deb1-4587-9c22-29ca833865ed 2017-10-30 02:49:47     2 5.701320  117.4892 <dbl [2]>
 3 fffd16d5-83f1-4ea1-95de-34b1fcad392b 2017-10-30 04:25:44     4 5.334012  100.2172 <dbl [2]>
 4 fffc68e3-866e-4be5-b1bc-5d21b89622ae 2017-10-30 04:29:44     4 1.373545  104.1265 <dbl [2]>
 5 fffd16d5-83f1-4ea1-95de-34b1fcad392b 2017-10-30 02:58:30     2 5.334061  100.2173 <dbl [2]>
 6 fffd16d5-83f1-4ea1-95de-34b1fcad392b 2017-10-30 04:55:41     4 5.334012  100.2172 <dbl [2]>
 7 fffc7412-deb1-4587-9c22-29ca833865ed 2017-10-30 04:49:07     4 5.729879  117.5787 <dbl [2]>
 8 fffc68e3-866e-4be5-b1bc-5d21b89622ae 2017-10-30 05:02:08     5 1.373545  104.1265 <dbl [2]>
 9 fffc7412-deb1-4587-9c22-29ca833865ed 2017-10-30 00:53:12     0 5.701320  117.4892 <dbl [2]>
10 fffc7412-deb1-4587-9c22-29ca833865ed 2017-10-30 04:08:12     4 5.670300  117.4990 <dbl [2]>
# ... with more rows

R代码如下:

kms <- function(idLogs){
    tryCatch({

    #idLogs <- sparklyr::ft_vector_assembler(idLogs, input_cols= c("latitude", "longitude"), output_col = "features")

    km  <- sparklyr::ml_kmeans(x = idLogs, centers = 3,features = c("latitude","longitude"))

    km1 <- copy_to(sc, km$centers, overwrite = T)

    return(data.frame(x=1,y=1))

    cluster <- sdf_predict(km)

    clustCounts <- cluster %>% group_by(prediction) %>% 
      tally  %>%
      mutate(conf=n/sum(n),
             prediction=prediction+1)

    clustCounts <- merge(clustCounts, km$centers, by.x=3, by.y=0)

    clustCounts <- clustCounts %>% filter(., conf==max(conf)) %>% select(latitude, longitude, conf)

    #clustCounts <- cbind.data.frame(id, hr, clustCounts)

    #clustCounts1 <- copy_to(sc, clustCounts, overwrite = T)

    return(data.frame(clustCounts))
  }, error = function(e) {
    return(
      data.frame(string_categories = c(substr(e, 1, 20)))
    )
  })
}

并且这样调用

likelyLocs <- spark_apply(samplog, kms)

我在RStudio收到的错误是:

Error: org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 187.0 failed 4 times, most recent failure: Lost task 0.3 in stage 187.0 (TID 250, spark-1.c.halogen-order-184815.internal, executor 2): java.lang.Exception: sparklyr worker rscript failure with status 255, check worker logs for details.
    at sparklyr.Rscript.init(rscript.scala:67)
    at sparklyr.WorkerRDD$$anon$2.run(rdd.scala:92)

Driver stacktrace:
    at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1457)
    at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1445)
    at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1444)
    at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
    at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47)
    at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1444)
    at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:799)
    at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:799)
    at scala.Option.foreach(Option.scala:236)
    at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:799)
    at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1668)
    at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1627)
    at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1616)
    at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48)
    at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:620)
    at org.apache.spark.SparkContext.runJob(SparkContext.scala:1862)
    at org.apache.spark.SparkContext.runJob(SparkContext.scala:1875)
    at org.apache.spark.SparkContext.runJob(SparkContext.scala:1888)
    at org.apache.spark.rdd.RDD$$anonfun$take$1.apply(RDD.scala:1328)
    at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:150)
    at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:111)
    at org.apache.spark.rdd.RDD.withScope(RDD.scala:316)
    at org.apache.spark.rdd.RDD.take(RDD.scala:1302)
    at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
    at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
    at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
    at java.lang.reflect.Method.invoke(Method.java:498)
    at sparklyr.Invoke$.invoke(invoke.scala:102)
    at sparklyr.StreamHandler$.handleMethodCall(stream.scala:97)
    at sparklyr.StreamHandler$.read(stream.scala:62)
    at sparklyr.BackendHandler.channelRead0(handler.scala:52)
    at sparklyr.BackendHandler.channelRead0(handler.scala:14)
    at io.netty.channel.SimpleChannelInboundHandler.channelRead(SimpleChannelInboundHandler.java:105)
    at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:308)
    at io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:294)
    at io.netty.handler.codec.MessageToMessageDecoder.channelRead(MessageToMessageDecoder.java:103)
    at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:308)
    at io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:294)
    at io.netty.handler.codec.ByteToMessageDecoder.channelRead(ByteToMessageDecoder.java:244)
    at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:308)
    at io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:294)
    at io.netty.channel.DefaultChannelPipeline.fireChannelRead(DefaultChannelPipeline.java:846)
    at io.netty.channel.nio.AbstractNioByteChannel$NioByteUnsafe.read(AbstractNioByteChannel.java:131)
    at io.netty.channel.nio.NioEventLoop.processSelectedKey(NioEventLoop.java:511)
    at io.netty.channel.nio.NioEventLoop.processSelectedKeysOptimized(NioEventLoop.java:468)
    at io.netty.channel.nio.NioEventLoop.processSelectedKeys(NioEventLoop.java:382)
    at io.netty.channel.nio.NioEventLoop.run(NioEventLoop.java:354)
    at io.netty.util.concurrent.SingleThreadEventExecutor$2.run(SingleThreadEventExecutor.java:111)
    at io.netty.util.concurrent.DefaultThreadFactory$DefaultRunnableDecorator.run(DefaultThreadFactory.java:137)
    at java.lang.Thread.run(Thread.java:748)
Caused by: java.lang.Exception: sparklyr worker rscript failure with status 255, check worker logs for details.
    at sparklyr.Rscript.init(rscript.scala:67)
    at sparklyr.WorkerRDD$$anon$2.run(rdd.scala:92)

根据错误详情的指示,我检查了火花日志并得到了以下内容。

> spark_log(sc)
17/11/09 21:48:05 INFO spark.ContextCleaner: Cleaned accumulator 402
17/11/09 21:48:05 INFO storage.BlockManagerInfo: Removed broadcast_237_piece0 on 10.148.0.3:34567 in memory (size: 250.0 B, free: 530.0 MB)
17/11/09 21:48:05 INFO storage.BlockManagerInfo: Removed broadcast_237_piece0 on spark-1.c.halogen-order-184815.internal:35671 in memory (size: 250.0 B, free: 530.2 MB)
17/11/09 21:48:05 INFO spark.ContextCleaner: Cleaned accumulator 401
17/11/09 21:48:05 INFO storage.BlockManagerInfo: Removed broadcast_236_piece0 on 10.148.0.3:34567 in memory (size: 1658.0 B, free: 530.0 MB)
17/11/09 21:48:05 INFO storage.BlockManagerInfo: Removed broadcast_236_piece0 on spark-1.c.halogen-order-184815.internal:35671 in memory (size: 1658.0 B, free: 530.2 MB)
17/11/09 21:48:05 INFO spark.ContextCleaner: Cleaned accumulator 400
17/11/09 21:48:05 INFO storage.BlockManagerInfo: Removed broadcast_235_piece0 on 10.148.0.3:34567 in memory (size: 9.4 KB, free: 530.0 MB)
17/11/09 21:48:05 INFO storage.BlockManagerInfo: Removed broadcast_235_piece0 on spark-1.c.halogen-order-184815.internal:35671 in memory (size: 9.4 KB, free: 530.2 MB)
17/11/09 21:48:05 INFO spark.ContextCleaner: Cleaned accumulator 399
17/11/09 21:48:05 INFO spark.ContextCleaner: Cleaned shuffle 31
17/11/09 21:48:05 INFO storage.BlockManagerInfo: Removed broadcast_234_piece0 on 10.148.0.3:34567 in memory (size: 202.0 B, free: 530.0 MB)
17/11/09 21:48:05 INFO spark.ContextCleaner: Cleaned accumulator 398
17/11/09 21:48:05 INFO storage.BlockManagerInfo: Removed broadcast_233_piece0 on 10.148.0.3:34567 in memory (size: 1550.0 B, free: 530.0 MB)
17/11/09 21:48:05 INFO storage.BlockManagerInfo: Removed broadcast_233_piece0 on spark-1.c.halogen-order-184815.internal:35671 in memory (size: 1550.0 B, free: 530.2 MB)
17/11/09 21:48:05 INFO spark.ContextCleaner: Cleaned accumulator 397
17/11/09 21:48:05 INFO storage.BlockManagerInfo: Removed broadcast_232_piece0 on 10.148.0.3:34567 in memory (size: 9.3 KB, free: 530.0 MB)
17/11/09 21:48:05 INFO storage.BlockManagerInfo: Removed broadcast_232_piece0 on spark-1.c.halogen-order-184815.internal:35671 in memory (size: 9.3 KB, free: 530.2 MB)
17/11/09 21:48:05 INFO spark.ContextCleaner: Cleaned accumulator 396
17/11/09 21:48:05 INFO spark.ContextCleaner: Cleaned shuffle 30
17/11/09 21:48:05 INFO storage.BlockManagerInfo: Removed broadcast_231_piece0 on 10.148.0.3:34567 in memory (size: 421.0 B, free: 530.0 MB)
17/11/09 21:48:05 INFO storage.BlockManagerInfo: Removed broadcast_230_piece0 on 10.148.0.3:34567 in memory (size: 9.5 KB, free: 530.0 MB)
17/11/09 21:48:05 INFO storage.BlockManagerInfo: Removed broadcast_230_piece0 on spark-1.c.halogen-order-184815.internal:35671 in memory (size: 9.5 KB, free: 530.2 MB)
17/11/09 21:48:05 INFO spark.ContextCleaner: Cleaned accumulator 395
17/11/09 21:48:05 INFO storage.BlockManagerInfo: Removed broadcast_229_piece0 on 10.148.0.3:34567 in memory (size: 9.4 KB, free: 530.0 MB)
17/11/09 21:48:05 INFO storage.BlockManagerInfo: Removed broadcast_229_piece0 on spark-1.c.halogen-order-184815.internal:35671 in memory (size: 9.4 KB, free: 530.3 MB)
17/11/09 21:48:05 INFO spark.ContextCleaner: Cleaned accumulator 394
17/11/09 21:48:05 INFO storage.BlockManager: Removing RDD 515
17/11/09 21:48:05 INFO spark.ContextCleaner: Cleaned RDD 515
17/11/09 21:48:05 INFO storage.BlockManagerInfo: Removed broadcast_228_piece0 on 10.148.0.3:34567 in memory (size: 175.0 B, free: 530.0 MB)
17/11/13 12:11:09 INFO spark.SparkContext: Starting job: collect at utils.scala:196
17/11/13 12:11:09 INFO scheduler.DAGScheduler: Got job 153 (collect at utils.scala:196) with 1 output partitions
17/11/13 12:11:09 INFO scheduler.DAGScheduler: Final stage: ResultStage 185 (collect at utils.scala:196)
17/11/13 12:11:09 INFO scheduler.DAGScheduler: Parents of final stage: List()
17/11/13 12:11:09 INFO scheduler.DAGScheduler: Missing parents: List()
17/11/13 12:11:09 INFO scheduler.DAGScheduler: Submitting ResultStage 185 (MapPartitionsRDD[536] at collect at utils.scala:196), which has no missing parents
17/11/13 12:11:09 INFO storage.MemoryStore: Block broadcast_241 stored as values in memory (estimated size 1968.0 B, free 530.0 MB)
17/11/13 12:11:09 INFO storage.MemoryStore: Block broadcast_241_piece0 stored as bytes in memory (estimated size 1206.0 B, free 530.0 MB)
17/11/13 12:11:09 INFO storage.BlockManagerInfo: Added broadcast_241_piece0 in memory on 10.148.0.3:34567 (size: 1206.0 B, free: 530.0 MB)
17/11/13 12:11:09 INFO spark.SparkContext: Created broadcast 241 from broadcast at DAGScheduler.scala:1004
17/11/13 12:11:09 INFO scheduler.DAGScheduler: Submitting 1 missing tasks from ResultStage 185 (MapPartitionsRDD[536] at collect at utils.scala:196) (first 15 tasks are for partitions Vector(0))
17/11/13 12:11:09 INFO cluster.YarnScheduler: Adding task set 185.0 with 1 tasks
17/11/13 12:11:09 INFO scheduler.TaskSetManager: Starting task 0.0 in stage 185.0 (TID 245, spark-1.c.halogen-order-184815.internal, executor 2, partition 0, PROCESS_LOCAL, 3699 bytes)
17/11/13 12:11:09 INFO storage.BlockManagerInfo: Added broadcast_241_piece0 in memory on spark-1.c.halogen-order-184815.internal:35671 (size: 1206.0 B, free: 530.3 MB)
17/11/13 12:11:09 INFO scheduler.TaskSetManager: Finished task 0.0 in stage 185.0 (TID 245) in 94 ms on spark-1.c.halogen-order-184815.internal (executor 2) (1/1)
17/11/13 12:11:09 INFO scheduler.DAGScheduler: ResultStage 185 (collect at utils.scala:196) finished in 0.096 s
17/11/13 12:11:09 INFO cluster.YarnScheduler: Removed TaskSet 185.0, whose tasks have all completed, from pool 
17/11/13 12:11:09 INFO scheduler.DAGScheduler: Job 153 finished: collect at utils.scala:196, took 0.111329 s
17/11/13 12:11:09 INFO spark.SparkContext: Starting job: collect at utils.scala:196
17/11/13 12:11:09 INFO scheduler.DAGScheduler: Got job 154 (collect at utils.scala:196) with 1 output partitions
17/11/13 12:11:09 INFO scheduler.DAGScheduler: Final stage: ResultStage 186 (collect at utils.scala:196)
17/11/13 12:11:09 INFO scheduler.DAGScheduler: Parents of final stage: List()
17/11/13 12:11:09 INFO scheduler.DAGScheduler: Missing parents: List()
17/11/13 12:11:09 INFO scheduler.DAGScheduler: Submitting ResultStage 186 (MapPartitionsRDD[538] at collect at utils.scala:196), which has no missing parents
17/11/13 12:11:09 INFO storage.MemoryStore: Block broadcast_242 stored as values in memory (estimated size 1968.0 B, free 530.0 MB)
17/11/13 12:11:09 INFO storage.MemoryStore: Block broadcast_242_piece0 stored as bytes in memory (estimated size 1207.0 B, free 530.0 MB)
17/11/13 12:11:09 INFO storage.BlockManagerInfo: Added broadcast_242_piece0 in memory on 10.148.0.3:34567 (size: 1207.0 B, free: 530.0 MB)
17/11/13 12:11:09 INFO spark.SparkContext: Created broadcast 242 from broadcast at DAGScheduler.scala:1004
17/11/13 12:11:09 INFO scheduler.DAGScheduler: Submitting 1 missing tasks from ResultStage 186 (MapPartitionsRDD[538] at collect at utils.scala:196) (first 15 tasks are for partitions Vector(0))
17/11/13 12:11:09 INFO cluster.YarnScheduler: Adding task set 186.0 with 1 tasks
17/11/13 12:11:09 INFO scheduler.TaskSetManager: Starting task 0.0 in stage 186.0 (TID 246, spark-1.c.halogen-order-184815.internal, executor 2, partition 0, PROCESS_LOCAL, 3699 bytes)
17/11/13 12:11:09 INFO storage.BlockManagerInfo: Added broadcast_242_piece0 in memory on spark-1.c.halogen-order-184815.internal:35671 (size: 1207.0 B, free: 530.3 MB)
17/11/13 12:11:09 INFO scheduler.TaskSetManager: Finished task 0.0 in stage 186.0 (TID 246) in 22 ms on spark-1.c.halogen-order-184815.internal (executor 2) (1/1)
17/11/13 12:11:09 INFO scheduler.DAGScheduler: ResultStage 186 (collect at utils.scala:196) finished in 0.022 s
17/11/13 12:11:09 INFO cluster.YarnScheduler: Removed TaskSet 186.0, whose tasks have all completed, from pool 
17/11/13 12:11:09 INFO scheduler.DAGScheduler: Job 154 finished: collect at utils.scala:196, took 0.031006 s
17/11/13 12:11:22 INFO spark.SparkContext: Starting job: take at NativeMethodAccessorImpl.java:-2
17/11/13 12:11:22 INFO scheduler.DAGScheduler: Got job 155 (take at NativeMethodAccessorImpl.java:-2) with 1 output partitions
17/11/13 12:11:22 INFO scheduler.DAGScheduler: Final stage: ResultStage 187 (take at NativeMethodAccessorImpl.java:-2)
17/11/13 12:11:22 INFO scheduler.DAGScheduler: Parents of final stage: List()
17/11/13 12:11:22 INFO scheduler.DAGScheduler: Missing parents: List()
17/11/13 12:11:22 INFO scheduler.DAGScheduler: Submitting ResultStage 187 (WorkerRDD[542] at RDD at rdd.scala:7), which has no missing parents
17/11/13 12:11:22 INFO storage.MemoryStore: Block broadcast_243 stored as values in memory (estimated size 35.2 KB, free 530.0 MB)
17/11/13 12:11:22 INFO storage.MemoryStore: Block broadcast_243_piece0 stored as bytes in memory (estimated size 14.4 KB, free 530.0 MB)
17/11/13 12:11:22 INFO storage.BlockManagerInfo: Added broadcast_243_piece0 in memory on 10.148.0.3:34567 (size: 14.4 KB, free: 530.0 MB)
17/11/13 12:11:22 INFO spark.SparkContext: Created broadcast 243 from broadcast at DAGScheduler.scala:1004
17/11/13 12:11:22 INFO scheduler.DAGScheduler: Submitting 1 missing tasks from ResultStage 187 (WorkerRDD[542] at RDD at rdd.scala:7) (first 15 tasks are for partitions Vector(0))
17/11/13 12:11:22 INFO cluster.YarnScheduler: Adding task set 187.0 with 1 tasks
17/11/13 12:11:22 INFO scheduler.TaskSetManager: Starting task 0.0 in stage 187.0 (TID 247, spark-1.c.halogen-order-184815.internal, executor 2, partition 0, PROCESS_LOCAL, 3488 bytes)
17/11/13 12:11:22 INFO storage.BlockManagerInfo: Added broadcast_243_piece0 in memory on spark-1.c.halogen-order-184815.internal:35671 (size: 14.4 KB, free: 530.2 MB)
17/11/13 12:11:23 WARN scheduler.TaskSetManager: Lost task 0.0 in stage 187.0 (TID 247, spark-1.c.halogen-order-184815.internal, executor 2): java.lang.Exception: sparklyr worker rscript failure with status 255, check worker logs for details.
    at sparklyr.Rscript.init(rscript.scala:67)
    at sparklyr.WorkerRDD$$anon$2.run(rdd.scala:92)

17/11/13 12:11:23 INFO scheduler.TaskSetManager: Starting task 0.1 in stage 187.0 (TID 248, spark-1.c.halogen-order-184815.internal, executor 2, partition 0, PROCESS_LOCAL, 3488 bytes)
17/11/13 12:11:24 INFO scheduler.TaskSetManager: Lost task 0.1 in stage 187.0 (TID 248) on spark-1.c.halogen-order-184815.internal, executor 2: java.lang.Exception (sparklyr worker rscript failure with status 255, check worker logs for details.) [duplicate 1]
17/11/13 12:11:24 INFO scheduler.TaskSetManager: Starting task 0.2 in stage 187.0 (TID 249, spark-1.c.halogen-order-184815.internal, executor 2, partition 0, PROCESS_LOCAL, 3488 bytes)
17/11/13 12:11:25 INFO scheduler.TaskSetManager: Lost task 0.2 in stage 187.0 (TID 249) on spark-1.c.halogen-order-184815.internal, executor 2: java.lang.Exception (sparklyr worker rscript failure with status 255, check worker logs for details.) [duplicate 2]
17/11/13 12:11:25 INFO scheduler.TaskSetManager: Starting task 0.3 in stage 187.0 (TID 250, spark-1.c.halogen-order-184815.internal, executor 2, partition 0, PROCESS_LOCAL, 3488 bytes)
17/11/13 12:11:25 INFO scheduler.TaskSetManager: Lost task 0.3 in stage 187.0 (TID 250) on spark-1.c.halogen-order-184815.internal, executor 2: java.lang.Exception (sparklyr worker rscript failure with status 255, check worker logs for details.) [duplicate 3]
17/11/13 12:11:25 ERROR scheduler.TaskSetManager: Task 0 in stage 187.0 failed 4 times; aborting job
17/11/13 12:11:25 INFO cluster.YarnScheduler: Removed TaskSet 187.0, whose tasks have all completed, from pool 
17/11/13 12:11:25 INFO cluster.YarnScheduler: Cancelling stage 187
17/11/13 12:11:25 INFO scheduler.DAGScheduler: ResultStage 187 (take at NativeMethodAccessorImpl.java:-2) failed in 3.496 s due to Job aborted due to stage failure: Task 0 in stage 187.0 failed 4 times, most recent failure: Lost task 0.3 in stage 187.0 (TID 250, spark-1.c.halogen-order-184815.internal, executor 2): java.lang.Exception: sparklyr worker rscript failure with status 255, check worker logs for details.
    at sparklyr.Rscript.init(rscript.scala:67)
    at sparklyr.WorkerRDD$$anon$2.run(rdd.scala:92)

Driver stacktrace:
17/11/13 12:11:25 INFO scheduler.DAGScheduler: Job 155 failed: take at NativeMethodAccessorImpl.java:-2, took 3.506663 s
17/11/13 12:11:25 ERROR sparklyr: Gateway (37351) failed calling take on 699

我似乎只能想到,火花工作在最后阶段的某个地方失败,所以可能合并不同工人的输出?任何人都可以帮助找到可能存在的问题吗?

1 个答案:

答案 0 :(得分:0)

在github包问题页面的帮助下解决:https://github.com/rstudio/sparklyr/issues/1121

相关部分:

  

仍然不确定为什么,但config=list()添加到spark_connect   它 - 想法来自   Can sparklyr be used with spark deployed on yarn-managed hadoop cluster?