我有一个由7只股票组成的投资组合,其信息在2个DataFrames中。
市值:
AAPL GOOGL AMZN FB IBM MSFT ORCL
2018-06-04 942870.9225 795721.6978 808033.8064 559683.8431 131306.1865 781150.6901 193175.0512
2018-06-05 950145.3268 795208.7988 823114.6586 558699.2999 131912.0456 785145.9528 192399.4117
2018-06-06 953438.4692 792862.4102 822823.5225 554066.1556 132839.1936 787450.9121 194930.4458
2018-06-07 950882.5975 783977.2272 819693.8089 544915.6954 133435.8730 775080.9641 194644.6838
2018-06-08 942231.9546 782312.8482 817117.2541 547579.7534 134151.8882 780843.3622 196685.8403
和投资组合股票价格:
AAPL FB GOOG AMZN IBM MSFT ORCL
2018-06-04 189.6813 193.28 1139.29 1665.27 136.5008 100.4157 46.5525
2018-06-05 191.1447 192.94 1139.66 1696.35 137.1307 100.9293 46.3656
2018-06-06 191.8072 191.34 1136.88 1695.75 138.0945 101.2256 46.9755
2018-06-07 191.2930 188.18 1123.86 1689.30 138.7148 99.6354 46.9067
我想计算每日加权平均投资组合收益。权重是股票总金额占总股票总金额的百分比。
例如,加权收益应为
sum(stock return i * stock cap i)/sum(stock cap i)
如何生成包含整个期间每日收益的新数据框?
答案 0 :(得分:0)
不确定我是否正确地找到了您,但是呢:
import pandas as pd
pd.set_option('display.max_columns',30)
pd.set_option('display.width',1000)
pd.set_option('precision', 4)
mc="""date AAPL GOOG AMZN FB IBM MSFT ORCL
2018-06-04 942870.9225 795721.6978 808033.8064 559683.8431 131306.1865 781150.6901 193175.0512
2018-06-05 950145.3268 795208.7988 823114.6586 558699.2999 131912.0456 785145.9528 192399.4117
2018-06-06 953438.4692 792862.4102 822823.5225 554066.1556 132839.1936 787450.9121 194930.4458
2018-06-07 950882.5975 783977.2272 819693.8089 544915.6954 133435.8730 775080.9641 194644.6838
2018-06-08 942231.9546 782312.8482 817117.2541 547579.7534 134151.8882 780843.3622 196685.8403
"""
sp="""date AAPL FB GOOG AMZN IBM MSFT ORCL
2018-06-04 189.6813 193.28 1139.29 1665.27 136.5008 100.4157 46.5525
2018-06-05 191.1447 192.94 1139.66 1696.35 137.1307 100.9293 46.3656
2018-06-06 191.8072 191.34 1136.88 1695.75 138.0945 101.2256 46.9755
2018-06-07 191.2930 188.18 1123.86 1689.30 138.7148 99.6354 46.9067
"""
marketcap=pd.read_csv(pd.compat.StringIO(mc),header=0,sep="\s+",parse_dates=True,index_col=0)
prices=pd.read_csv(pd.compat.StringIO(sp),header=0,sep="\s+",parse_dates=True,index_col=0)
portfolioReturns=pd.DataFrame()
def weightedReturn(key):
dailyReturns=prices[key].pct_change(1)
weights=marketcap[key]
portfolioReturns[key]=dailyReturns*weights
[weightedReturn(key) for key in prices.columns]
print(portfolioReturns)
产量:
AAPL FB GOOG AMZN IBM MSFT ORCL
date
2018-06-04 NaN NaN NaN NaN NaN NaN NaN
2018-06-05 7330.4151 -982.8113 258.2549 15362.3158 608.7246 4015.8159 -772.4494
2018-06-06 3304.5802 -4594.7230 -1934.0483 -291.0332 933.6379 2311.7341 2564.1441
2018-06-07 -2549.1422 -8999.3394 -8978.4177 -3117.8093 599.3741 -12176.1071 -285.0753
2018-06-08 NaN NaN NaN NaN NaN NaN NaN
当然还有portfolioReturns.mean(axis=1)
将返回投资组合的平均每日回报。
或者,作为一个单行代码:print(prices.pct_change()).multiply(marketcap).mean(axis=1)