我正在尝试在熊猫中创建条件列。这是数据框的外观。
$input
如您所见,我的数据显示了狗及其主人。我们也知道狗是否蓬松。我想创建两列 data = [{"owner" : "john", "dog" : 'magie', "dog_is_fluffy" : 1},
{"owner" : "john", "dog" : 'stellar', "dog_is_fluffy" : 0},
{"owner" : "lisa", "dog" : 'mollie' , "dog_is_fluffy" : 0},
{"owner" : "lisa", "dog" : 'rex', "dog_is_fluffy" : 0},
{"owner" : "john", "dog" : 'luns', "dog_is_fluffy" : 1}]
df = pd.DataFrame(data)
和fluffy_dogs_owned
。
我正在寻找的结果是:
owner_has_fluffy_dog
我曾考虑过使用data_result = [{"owner" : "john", "dog" : 'magie', "dog_is_fluffy" : 1, "fluffy_dogs_owned" : 2, "owner_has_fluffy_dog" : 1},
{"owner" : "john", "dog" : 'stellar', "dog_is_fluffy" : 0, "fluffy_dogs_owned" : 2, "owner_has_fluffy_dog" : 1},
{"owner" : "lisa", "dog" : 'mollie' , "dog_is_fluffy" : 0, "fluffy_dogs_owned" : 0, "owner_has_fluffy_dog" : 0},
{"owner" : "lisa", "dog" : 'rex', "dog_is_fluffy" : 0, "fluffy_dogs_owned" : 0, "owner_has_fluffy_dog" : 0},
{"owner" : "john", "dog" : 'luns', "dog_is_fluffy" : 1, "fluffy_dogs_owned" : 2, "owner_has_fluffy_dog" : 1}]
df_result = pd.DataFrame(data_result)
和df.groupby()
,但到目前为止我还无法使用。有任何想法吗?
答案 0 :(得分:2)
使用GroupBy.transform
来返回Series
,其大小与带有sum
的原始数据帧相同,然后比较不等于Series.ne
的列并转换为整数
df['fluffy_dogs_owned'] = df.groupby('owner')['dog_is_fluffy'].transform('sum')
df['owner_has_fluffy_dog'] = df['fluffy_dogs_owned'].ne(0).astype(int)
或使用Series.clip
:
df['owner_has_fluffy_dog'] = df['fluffy_dogs_owned'].clip(upper=1)
print (df)
dog dog_is_fluffy owner fluffy_dogs_owned owner_has_fluffy_dog
0 magie 1 john 2 1
1 stellar 0 john 2 1
2 mollie 0 lisa 0 0
3 rex 0 lisa 0 0
4 luns 1 john 2 1