我有数据框:
sepallength sepalwidth petallength petalwidth class cluster
0 5.1 3.5 1.4 0.2 Iris-setosa cluster1
1 4.9 3 1.4 0.2 Iris-setosa cluster1
2 4.7 3.2 1.3 0.2 Iris-setosa cluster1
3 4.6 3.1 1.5 0.2 Iris-setosa cluster1
4 5 3.6 1.4 0.2 Iris-setosa cluster1
5 5.4 3.9 1.7 0.4 Iris-setosa cluster1
6 4.6 3.4 1.4 0.3 Iris-setosa cluster1
7 5 3.4 1.5 0.2 Iris-setosa cluster1
8 4.4 2.9 1.4 0.2 Iris-setosa cluster1
9 4.9 3.1 1.5 0.1 Iris-setosa cluster1
和字典:
{'cluster2': 'Iris-virginica', 'cluster0': 'Iris-versicolor', 'cluster1': 'Iris-setosa'}
我需要添加另一个列并使用此df [' cluster'] == key
字典中的值填充它我尝试过使用np.where
def countTruth(df):
# dictionary mapping cluster to most frequent class
clustersClass = df.groupby(['cluster'])['class'].agg(lambda x:x.value_counts().index[0]).to_dict()
for eachKey in clustersClass:
newv = clustersClass[eachKey]
print df
df['new'] = np.where(df['cluster']==eachKey , newv)
崩溃说应该给出x和y两者或两者都不应该
我的最终目标是根据群集和类标签计算真正的正面,真正的负面因素,FP和FN。这是迈向...的一步。
答案 0 :(得分:2)
致电map
并传递字典:
In [326]:
d={'cluster2': 'Iris-virginica', 'cluster0': 'Iris-versicolor', 'cluster1': 'Iris-setosa'}
df['key'] = df['cluster'].map(d)
df
Out[326]:
sepallength sepalwidth petallength petalwidth class cluster \
0 5.1 3.5 1.4 0.2 Iris-setosa cluster1
1 4.9 3.0 1.4 0.2 Iris-setosa cluster1
2 4.7 3.2 1.3 0.2 Iris-setosa cluster1
3 4.6 3.1 1.5 0.2 Iris-setosa cluster1
4 5.0 3.6 1.4 0.2 Iris-setosa cluster1
5 5.4 3.9 1.7 0.4 Iris-setosa cluster1
6 4.6 3.4 1.4 0.3 Iris-setosa cluster1
7 5.0 3.4 1.5 0.2 Iris-setosa cluster1
8 4.4 2.9 1.4 0.2 Iris-setosa cluster1
9 4.9 3.1 1.5 0.1 Iris-setosa cluster1
key
0 Iris-setosa
1 Iris-setosa
2 Iris-setosa
3 Iris-setosa
4 Iris-setosa
5 Iris-setosa
6 Iris-setosa
7 Iris-setosa
8 Iris-setosa
9 Iris-setosa