talos
支持GPU并行化时,如何扩展扫描对象以支持CPU + GPU并行化?
答案 0 :(得分:0)
采用将扫描实验分为多个过程的方法:
import multiprocessing as mp
from itertools import product
import talos
import os
# Helper function to create configuration chunks
def chunkify(lst, n):
return [lst[i::n] for i in range(n)]
# a Talos Scan Configuration superset
playbook_configurations = {
"input_lstm_dim": [5, 15, 30, 50],
"dense_a_dim": [None, 5],
"dense_b_dim": [None, 5],
"dense_c_dim": [None, 5],
"dropout_a_rate": [None, 0.7, 0.5, 0.3],
"epochs": [100],
"verbose": [verbose_flag],
"batch_normalization": [None, 1]
}
# Threadsafe Queue for scan results
output = mp.Queue()
# Actual scan to run within each process
def process_scan(playbook_scan_settings, output):
scan = talos.Scan(
...
params=playbook_scan_settings,
)
...
output.put(results) # pump results onto queue
# Sample Process count based on core affinity
cpu_count = len(os.sched_getaffinity(0))
# Cartesian product of Talos Configuration
playbook_configurations_cartesian_product = [dict(zip(playbook_configurations, v)) for v in product(
*playbook_configurations.values())]
# Configuration chunks to assign to each process
playbook_configuration_groups = chunkify(
playbook_configurations_cartesian_product, cpu_count)
processes = []
for playbook_configuration_group in playbook_configuration_groups:
# merged (array) configuration for process group
playbook_scan_settings = {}
for g in playbook_configuration_group:
for k, v in g.items():
if not k in playbook_scan_settings:
playbook_scan_settings[k] = []
if not v in playbook_scan_settings[k]:
playbook_scan_settings[k].append(v)
if bool(playbook_scan_settings):
# process to scan on merged configuration for process group
processes.append(mp.Process(
target=process_scan, args=(playbook_scan_settings, output)))
for p in processes:
p.start()
for p in processes:
p.join()
# Will be the result from the message queue
results = [output.get() for p in processes]
您可以轻松地将Report对象,获胜模型和每个扫描层的指标输入到消息队列中以进行最终选择。