投影矩阵乘以后如何渲染三角形

时间:2019-05-05 08:17:29

标签: java matrix graphics 3d render

我正在尝试从头开始用Java制作3d游戏,但是在将每个顶点与投影矩阵相乘后呈现三角形存在问题

我已经尝试使用投影的顶点x和y,但是结果是所有顶点在同一X中,所以我尝试旋转三角形X或Y或Z轴,但是结果相同。

渲染结果(绘画):

The result image

我知道三角形与摄影机对齐,但是我尝试通过更改其X或Y或Z坐标来移动重叠的顶点,但这没用


import java.awt.Color;
import java.awt.Graphics;

import measurement.MatrixF;
import measurement.Vector3f;
import model.Mesh;
import model.Triangle;
import toolbox.GE;
import toolbox.Matrix;
import toolbox.Vector;

public class MeshRenderer {

    private int width, height;
    private float fNear, fFar;
    private float fov;
    private float fAspectRatio;
    private float fovRad;
    private float theta;
    private MatrixF projectionMatrix;
    private MatrixF rotXMatrix;
    private MatrixF rotYMatrix;
    private MatrixF rotZMatrix;
    private Vector3f globalTranslation;

    public MeshRenderer(float fNear, float fFar, float fov, int width, int height) {
        this.fNear = fNear;
        this.fFar = fFar;
        this.fov = fov;
        this.fAspectRatio = height / width;
        this.width = width;
        this.height = height;
        this.fovRad = (float) (1.0f / Math.tan(Math.toRadians(fov / 2)));

        projectionMatrix = new MatrixF(4, 4);
        rotXMatrix = new MatrixF(4, 4);
        rotYMatrix = new MatrixF(4, 4);
        rotZMatrix = new MatrixF(4, 4);

        projectionMatrix.m[0][0] = fAspectRatio * fovRad;
        projectionMatrix.m[1][1] = fovRad;
        projectionMatrix.m[2][2] = (-(fFar + fNear)) / (fFar - fNear);
        projectionMatrix.m[3][2] = (-2 * fFar * fNear) / (fFar - fNear);
        projectionMatrix.m[2][3] = -1.0f;   
        projectionMatrix.m[3][3] = 0.0f;

        rotXMatrix.m[0][0] = 1;
        rotXMatrix.m[1][1] = (float) Math.cos(theta);
        rotXMatrix.m[2][1] = (float) -Math.sin(theta);
        rotXMatrix.m[1][2] = (float) Math.sin(theta);
        rotXMatrix.m[2][2] = (float) Math.cos(theta);

        rotYMatrix.m[0][0] = (float) Math.cos(theta);
        rotYMatrix.m[2][0] = (float) Math.sin(theta);
        rotYMatrix.m[1][1] = (float) 1.0;
        rotYMatrix.m[0][2] = (float) -Math.sin(theta);
        rotYMatrix.m[2][2] = (float) Math.cos(theta);

        rotXMatrix.m[2][2] = 1;
        rotXMatrix.m[0][0] = (float) Math.cos(theta);
        rotXMatrix.m[1][0] = (float) -Math.sin(theta);
        rotXMatrix.m[0][1] = (float) Math.sin(theta);
        rotXMatrix.m[1][1] = (float) Math.cos(theta);

        //projectionMatrix = Matrix.transpose(projectionMatrix);
        globalTranslation = new Vector3f(0.0f, 0.0f, 0.0f);
    }

    public void renderMesh(Mesh mesh, Graphics g) {

        for(int i = 0; i < mesh.tris.length; i++) {
            Triangle tri =  new Triangle(mesh.tris[i].p[0], mesh.tris[i].p[1], mesh.tris[i].p[2]);
            Triangle translatedTri = tri;
            Triangle projectedTri = new Triangle();

            theta += 0.0001;
            this.calculateRotationMatrix(theta);

            translatedTri.p[0] = Matrix.multiplyMatrixVector(tri.p[0], rotYMatrix);
            translatedTri.p[1] = Matrix.multiplyMatrixVector(tri.p[1], rotYMatrix);
            translatedTri.p[2] = Matrix.multiplyMatrixVector(tri.p[2], rotYMatrix);

            translatedTri.p[0].z = tri.p[0].z + globalTranslation.z;
            translatedTri.p[1].z = tri.p[1].z + globalTranslation.z;
            translatedTri.p[2].z = tri.p[2].z + globalTranslation.z;

            projectedTri.p[0] = Matrix.multiplyMatrixVector(translatedTri.p[0], projectionMatrix);
            projectedTri.p[1] = Matrix.multiplyMatrixVector(translatedTri.p[1], projectionMatrix);
            projectedTri.p[2] = Matrix.multiplyMatrixVector(translatedTri.p[2], projectionMatrix);

            projectedTri.p[0].x += 1.0f; projectedTri.p[0].y += 1.0f;
            projectedTri.p[1].x += 1.0f; projectedTri.p[1].y += 1.0f;
            projectedTri.p[2].x += 1.0f; projectedTri.p[2].y += 1.0f;

            float scale = 0.5f;

            projectedTri.p[0].x *= scale * width;
            projectedTri.p[0].y *= scale * height;
            projectedTri.p[1].x *= scale * width; 
            projectedTri.p[1].y *= scale * height;
            projectedTri.p[2].x *= scale * width; 
            projectedTri.p[2].y *= scale * height;


            GE.drawTriangle(projectedTri.p[0].x, projectedTri.p[0].y, projectedTri.p[1].x, projectedTri.p[1].y, projectedTri.p[2].x, projectedTri.p[2].y, Color.WHITE, g);

            for(int j = 0; j < projectedTri.p.length; j++) {
                g.setColor(new Color(255, 0, (j * 50)));
                g.fillRect((int)projectedTri.p[j].x - 8, (int)projectedTri.p[j].y - 8, 16 - j, 16 - j);
            }

            translatedTri.p[0].z = tri.p[0].z - globalTranslation.z;
            translatedTri.p[1].z = tri.p[1].z - globalTranslation.z;
            translatedTri.p[2].z = tri.p[2].z - globalTranslation.z;
        }
    }

    private void calculateRotationMatrix(float theta) {
        rotXMatrix.m[0][0] = 1;
        rotXMatrix.m[1][1] = (float) Math.cos(theta);
        rotXMatrix.m[2][1] = (float) -Math.sin(theta);
        rotXMatrix.m[1][2] = (float) Math.sin(theta);
        rotXMatrix.m[2][2] = (float) Math.cos(theta);

        rotYMatrix.m[0][0] = (float) Math.cos(theta);
        rotYMatrix.m[2][0] = (float) Math.sin(theta);
        rotYMatrix.m[1][1] = (float) 1.0;
        rotYMatrix.m[0][2] = (float) -Math.sin(theta);
        rotYMatrix.m[2][2] = (float) Math.cos(theta);

        rotXMatrix.m[2][2] = 1;
        rotXMatrix.m[0][0] = (float) Math.cos(theta);
        rotXMatrix.m[1][0] = (float) -Math.sin(theta);
        rotXMatrix.m[0][1] = (float) Math.sin(theta);
        rotXMatrix.m[1][1] = (float) Math.cos(theta);
    }

    public Vector3f getTranslation() {
        return globalTranslation;
    }

    public float getfNear() {
        return fNear;
    }

    public float getfFar() {
        return fFar;
    }

    public float getFov() {
        return fov;
    }

    public float getfAspectRatio() {
        return fAspectRatio;
    }

    public float getFovRad() {
        return fovRad;
    }

}

以防万一,矩阵(4x4)与vector3函数相乘

        Vector3f o = new Vector3f(0, 0, 0);
        o.x = (i.x * m.m[0][0]) + (i.y * m.m[1][0]) + (i.z * m.m[2][0]) + m.m[3][0];
        o.y = (i.x * m.m[0][1]) + (i.y * m.m[1][1]) + (i.z * m.m[2][1]) + m.m[3][1];
        o.z = (i.x * m.m[0][2]) + (i.y * m.m[1][2]) + (i.z * m.m[2][2]) + m.m[3][2];
        float w = (i.x * m.m[0][3]) + (i.y * m.m[1][3]) + (i.z * m.m[2][3]) + m.m[3][3];

        if (w != 0.0f)
        {
            o.x /= w; o.y /= w; o.z /= w;
        }

        return o;
    }

1 个答案:

答案 0 :(得分:0)

没有确切了解此类的使用方式,很难确切地说出问题所在,但是FWIW我在数学上没有看到错误:

  • 您可能打算在几个地方初始化rotZMatrix而不是重新初始化rotXMatrix,但是代码实际上并没有使用它们。

  • 在添加globalTranslation时,您可能只是想更新旋转的坐标,而用预旋转的z坐标覆盖旋转的z坐标。

  • 将MatrixF初始化为恒等式还是零都不是很明显-但如果是零,则可能应该用1.0填充旋转矩阵的m[3][3]元素。

    < / li>
  • 自然地,一旦有多个三角形,您可能想将theta增量和旋转计算提升到三角形循环之外。

我猜测问题是您将globalTranslation保留为零,并且网格位于原点附近,因此,变换后的几何位于错误的近平面上并且位于视图外部视锥大多数图形引擎都会剔除这种几何形状,因为转换后的结果将位于剪辑空间之外,并且在视点周围和视点之后看起来会越来越异常。

我建议尝试针对所有平移点调整globalTranslation.z以确保0 < fNear < translatedTri.p[i].z < fFar

(您还可以尝试将透视矩阵与正投影投影矩阵临时交换,以确定问题是出在投影/均匀化数学还是其他方面。)