我正在尝试实现一种结构搜索机制,查找块并将它们包装在一个块中。
我是机器学习的新手,起初我从brain.js
开始,这个库非常简单明了,我意识到第一次发生的事情,该库适用于简单的任务。
但是不幸的是,这个库没有功能,我早些时候问过如何找到块:How to take the data?
我决定尝试tensorflow
,但是由于难以理解该库,我仍然不了解它的学习方法,因为有输入且应该是什么结果。
这是我尝试搜索brain.js
https://jsfiddle.net/eoy7krzj/
<html>
<head>
<script src="https://cdn.rawgit.com/BrainJS/brain.js/5797b875/browser.js"></script>
</head>
<body>
<div>
<button onclick="train()">train</button><button onclick="Generate.next(); Generate.draw();">generate</button><button onclick="calculate()">calculate</button>
</div>
<canvas id="generate" style="border: 1px solid #000"></canvas>
</body>
<script type="text/javascript">
var trainData = [];
function randomInteger(min, max) {
var rand = min - 0.5 + Math.random() * (max - min + 1)
//rand = Math.round(rand);
return rand;
}
function getRandomColor() {
var letters = '0123456789ABCDEF';
var color = '#';
for (var i = 0; i < 6; i++) {
color += letters[Math.floor(Math.random() * 16)];
}
return color;
}
var Generate = new function(){
var canvas = document.getElementById('generate');
var ctx = canvas.getContext('2d');
var elem = {
input: [],
output: []
}
var size = {
width: 240,
height: 140
}
canvas.width = 500;
canvas.height = 250;
this.next = function(){
this.build();
trainData.push({
input: elem.input,
output: elem.output
});
}
this.clear = function(){
ctx.clearRect(0, 0, canvas.width, canvas.height);
}
this.draw = function(){
this.clear();
this.item(elem.input, function(item){
ctx.strokeStyle = "green";
ctx.strokeRect(item[0], item[1], item[2], item[3]);
})
this.item(elem.output, function(item){
ctx.strokeStyle = "blue";
ctx.strokeRect(item[0], item[1], item[2], item[3]);
})
}
this.item = function(where, call){
for (var i = 0; i < where.length; i+=4) {
var input = [
where[i],
where[i+1],
where[i+2],
where[i+3],
];
this.denormalize(input);
call(input)
}
}
this.normalize = function(input){
input[0] = input[0] / 500;
input[1] = input[1] / 250;
input[2] = input[2] / 500;
input[3] = input[3] / 250;
}
this.denormalize = function(input){
input[0] = input[0] * 500;
input[1] = input[1] * 250;
input[2] = input[2] * 500;
input[3] = input[3] * 250;
}
this.empty = function(add){
var data = [];
for (var i = 0; i < add; i++) {
data = data.concat([0,0,0,0]);
}
return data;
}
this.build = function(){
var output = [];
var input = [];
size.width = randomInteger(100,500);
size.height = randomInteger(50,250);
var lines = 1;//Math.round(size.height / 100);
var line_size = 0;
var line_offset = 0;
for(var i = 0; i < lines; i++){
line_size = randomInteger(30,Math.round(size.height / lines));
var columns = Math.round(randomInteger(1,3));
var columns_width = 0;
var columns_offset = 0;
for(var c = 0; c < columns; c++){
columns_width = randomInteger(30,Math.round(size.width / columns));
var item = [
columns_offset + 10,
line_offset + 10,
columns_width - 20,
line_size - 20
];
this.normalize(item);
input = input.concat(item);
columns_offset += columns_width;
}
var box = [
0,
line_offset,
columns_offset,
line_size
]
this.normalize(box);
output = output.concat(box);
line_offset += line_size + 10;
}
elem.input = input.concat(this.empty(5 - Math.round(input.length / 4)));
elem.output = output.concat(this.empty(2 - Math.round(output.length / 4)));
}
this.get = function(){
return elem.input;
}
this.calculate = function(result, stat){
console.log('brain:',result);
this.item(result, function(item){
ctx.strokeStyle = "red";
ctx.strokeRect(item[0], item[1], item[2], item[3]);
})
}
this.train = function(){
for(var i = 0; i < 1400; i++){
this.next();
}
}
}
Generate.train();
Generate.log = true;
var net,stat;
function train(){
net = new brain.NeuralNetwork({ hiddenLayers: [4],activation: 'tanh'});
stat = net.train(trainData,{log: true, iterations: 1250,learningRate: 0.0001,errorThresh:0.0005});
console.log('stat:',stat)
}
function calculate(){
Generate.calculate(net.run(Generate.get()))
}
</script>
</html>
我的目标是训练网络以查找元素并显示其大小。
程序:单击以进行培训单击生成以单击以进行计算
蓝色块包裹了绿色块,这应该是结果,红色块表明已经找到了神经网络。
这就是我感兴趣的:
tensorflow
可以找到块吗?如果有人在如何接收数据,以什么格式和如何训练方面举一个小例子,我将不胜感激。
修改
我给出了绿色块的大小和位置,目的是找到绿色块的位置及其总大小,例如,蓝色块显示了这一点。
答案 0 :(得分:0)
神经网络
神经网络的固定输入是绿色块的数量。假设我们将在图片中找到3个块。该模型的InputShape为[3,4],每个块具有4个坐标(x, y, w, h)
。预测的框可以是min(x), min(y), max(x+w), max(y+h)
。此边界框将包裹这些框。
样本数据可以是
features = [[[1, 2, 3, 4], [2, 4, 5, 6], [3, 4, 2, 2]]]
labels = [[1, 2, 7, 10]]
const random = _ => Math.floor(Math.random()*100)
const generate = _ => {
xarr = Array.from({length: 3}, _ => random())
yarr = Array.from({length: 3}, _ => random())
features = xarr.map((x, i) => ([x, yarr[i], x + random(), yarr[i] + random()]))
labels = features.reduce((acc, f) => ([Math.min(acc[0], f[0]), Math.min(acc[1], f[1]), Math.max(acc[0] + acc[2], f[0] + f[2]), Math.max(acc[0] + acc[3], f[1] + f[3])]) )
return {features, labels}
}
(async () => {
const model = tf.sequential();
model.add(tf.layers.dense({units: 20, inputShape: [3, 4], activation: 'relu'}));
model.add(tf.layers.reshape({targetShape: [60]}));
model.add(tf.layers.dense({units: 4, activation: 'relu'}));
model.summary();
// Prepare the model for training: Specify the loss and the optimizer.
model.compile({loss: 'meanSquaredError', optimizer: 'adam'});
// Generate some synthetic data for training.
let x = [];
let y = [];
for (let i = 0; i < 5; i++) {
const data = generate();
x.push(data.features);
y.push(data.labels);
}
const xs = tf.tensor3d(x);
const ys = tf.tensor2d(y);
console.log(xs.shape);
console.log(ys.shape);
// Train the model using the data then do inference on a data point the
// model hasn't seen:
xs.print()
ys.print()
await model.fit(xs, ys, {epochs: 100});
model.predict(tf.tensor([[[1, 2, 3, 4], [2, 4, 5, 6], [3, 4, 2, 2]]])).print();
})();
<html>
<head>
<!-- Load TensorFlow.js -->
<script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs@latest"> </script>
</head>
<body>
</body>
</html>
卷积过滤器
先前的模型将生成包装其坐标已赋予模型的框的框。但是,如果要找出匹配框的位置,则可以使用卷积过滤器。
让我们假设要在张量中匹配以下数据[[1, 2], [5, 6]]
。
此数据可以是裁剪后的图片,我们希望查看它是否存在于大图片中,如果是,则查看它出现了多少次。使用[[1, 1], [1, 1]]
的卷积过滤器,在匹配项的左上角坐标(x, y)
处将得到14的结果。对此值(14)进行过滤将返回感兴趣坐标的索引。
(async() => {
// tf.setBackend('cpu')
const arr = Array.from({length: 16}, (_, k) => k+1)
const x = tf.tensor([...arr, ...arr.reverse()], [8, 4]); // input image 2d
x.print()
const filter = tf.ones([2, 2]) // input filter 2d
const conv = x.reshape([1, ...x.shape, 1]).conv2d(filter.reshape([...filter.shape, 1, 1]), 1, 'same').squeeze()
conv.print() // conv
const part = tf.tensor([[1, 2], [5, 6]]) // searched tensor
const mask = conv.equal(part.sum()).asType('bool');
const coords = await tf.whereAsync(mask);
coords.print(); // (0, 0) and (4, 0) are the top left coordinates of part of x that matches the part tensor
// how many elements matches
console.log(coords.shape[0])
// filter coords
const [a, b] = coords.lessEqual(x.shape.map((a, i) => a - part.shape[i] )).split(2, 1); // because of padding 'same'
const filterMask = a.mul(b)
const filterCoords = await tf.whereAsync(filterMask);
filterCoords.print()
const newCoords = coords.gather(filterCoords.split(2, 1)[0].reshape([2]))
newCoords.print()
const matchIndexes = await newCoords.unstack().reduce(async (a, c) => {
const cropped = x.slice(await c.data(), part.shape)
const sameElements = (await tf.whereAsync(cropped.equal(part).asType('bool')))
if(tf.util.sizeFromShape(part.shape) * 2 === (await sameElements.data()).length) {
a.push(await c.data())
}
return a
}, [])
console.log('matching index', matchIndexes) // only [0, 0]
})()
<html>
<head>
<!-- Load TensorFlow.js -->
<script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs@latest"> </script>
</head>
<body>
</body>
</html>
更全面地说,卷积过滤器不足以判断是否存在匹配项。实际上,具有以下值[[5, 6], [2, 1]]
的张量的一部分也将输出14。为确保仅输出正确的索引,可以在给定坐标处对输入张量进行切片,并在处理张量时尽可能按位检查值不大或只是一些元素而已。