R无法将我的数据表识别为面板,我有几十年的收盘价和总回报率,但是有时之间缺少几个月,因此具有滞后值的简单回报计算不起作用有两个原因:不想获得不相隔1个月的滞后值的回报,现在它可以获取每个公司的回报,而不是每次观察都有一个时间序列。我的解决方法是这样:
df1 <- df %>%
group_by(seriesid) %>%
mutate(totret <- ifelse(month(date)-month(lag(date))>1,NA,totalreturn/lag(totalreturn)-1))
names(df1) <- c("date","company","totalreturn","close", "seriesid", "ticker","totret")
df1 <- df1 %>%
group_by(seriesid) %>%
mutate(closeret <- ifelse(month(date)-month(lag(date))>1,NA,close/lag(close)-1))
names(df1) <- c("date","company","totalreturn","close", "seriesid", "ticker","totret", "closeret")
这不是花哨的,但是R不允许采用更高级的解决方案,因为它无法识别新列。 我的数据如下:
date company returnprice close seriesid
1 1888-01-31 x 2.500 2.500 0005
2 1888-02-04 x 2.750 2.750 0005
3 1888-04-20 x 3.350 3.350 0005
4 1895-01-30 y 7.500 4.350 0001
5 1895-02-26 y 7.800 4.650 0001
我现在可以获取以下数据:
date company totalreturn close seriesid totret closeret
1 1888-01-31 x 2.500 2.500 0005 NA NA
2 1888-02-04 x 2.750 2.750 0005 0.1 0.1
3 1888-04-20 x 3.350 3.350 0005 NA NA
4 1895-01-30 y 7.500 4.350 0001 NA NA
5 1895-02-26 y 7.800 4.650 0001 0.04 0.06897
答案 0 :(得分:0)
df1 <- df %>%
group_by(seriesid) %>%
mutate(totret <- ifelse(month(date)-month(lag(date))>1,NA,totalreturn/lag(totalreturn)-1))
names(df1) <- c("date","company","totalreturn","close", "seriesid", "ticker","totret")
df1 <- df1 %>%
group_by(seriesid) %>%
mutate(closeret <- ifelse(month(date)-month(lag(date))>1,NA,close/lag(close)-1))
names(df1) <- c("date","company","totalreturn","close", "seriesid", "ticker","totret", "closeret")
答案 1 :(得分:0)
在您的示例之后,我添加了更多日期,只是为了查看当不适用3行以上且您的代码正常工作时会发生什么。但是,从“十二月”>“一月”开始,您会发现并发布新的一年。
data2 <- data %>% mutate(totret = ifelse(month(date)-month(lag(date))>1,NA,totalreturn/lag(totalreturn)-1),
closeret = ifelse(month(date)-month(lag(date))>1,NA,close/lag(close)-1))
date totalreturn close totret closeret
1 1888-01-28 2.5 2.5 NA NA
2 1888-02-28 2.7 2.7 0.0800000 0.08000000
3 1888-03-28 3.0 3.3 0.1111111 0.22222222
4 1888-05-28 3.5 3.5 NA NA
5 1888-08-28 2.8 4.0 NA NA
6 1888-10-28 3.0 4.3 NA NA
7 1888-12-28 3.2 4.5 NA NA
8 1889-03-28 3.6 4.6 0.1250000 0.02222222
我建议当差异大于31天时使用difftime()
并估算NA。
data3 <- data %>% mutate(totret = ifelse(difftime(date, lag(date), units = 'days')>31, NA, totalreturn/lag(totalreturn)-1),
closeret = ifelse(difftime(date, lag(date), units = 'days')>31, NA, close/lag(close)-1))
date totalreturn close totret closeret
1 1888-01-28 2.5 2.5 NA NA
2 1888-02-28 2.7 2.7 0.0800000 0.0800000
3 1888-03-28 3.0 3.3 0.1111111 0.2222222
4 1888-05-28 3.5 3.5 NA NA
5 1888-08-28 2.8 4.0 NA NA
6 1888-10-28 3.0 4.3 NA NA
7 1888-12-28 3.2 4.5 NA NA
8 1889-03-28 3.6 4.6 NA NA
我也尝试过difftime(dates[2], dates[1], units = 'secs') > duration(1, units = 'month')
,但是因为“月是30.41667天”,所以相差31天都无法使用