我希望我的神经网络解决多项式回归问题,例如y =(x * x)+ 2x -3。
因此,现在我创建了一个具有1个输入节点,100个隐藏节点和1个输出节点的网络,并给它提供了很多训练高测试数据量的纪元。问题在于,像20000个纪元之后的预测是可以的,但比训练后的线性回归预测要差得多。
import torch
from torch import Tensor
from torch.nn import Linear, MSELoss, functional as F
from torch.optim import SGD, Adam, RMSprop
from torch.autograd import Variable
import numpy as np
# define our data generation function
def data_generator(data_size=1000):
# f(x) = y = x^2 + 4x - 3
inputs = []
labels = []
# loop data_size times to generate the data
for ix in range(data_size):
# generate a random number between 0 and 1000
x = np.random.randint(1000) / 1000
# calculate the y value using the function x^2 + 4x - 3
y = (x * x) + (4 * x) - 3
# append the values to our input and labels lists
inputs.append([x])
labels.append([y])
return inputs, labels
# define the model
class Net(torch.nn.Module):
def __init__(self):
super(Net, self).__init__()
self.fc1 = Linear(1, 100)
self.fc2 = Linear(100, 1)
def forward(self, x):
x = F.relu(self.fc1(x)
x = self.fc2(x)
return x
model = Net()
# define the loss function
critereon = MSELoss()
# define the optimizer
optimizer = SGD(model.parameters(), lr=0.01)
# define the number of epochs and the data set size
nb_epochs = 20000
data_size = 1000
# create our training loop
for epoch in range(nb_epochs):
X, y = data_generator(data_size)
X = Variable(Tensor(X))
y = Variable(Tensor(y))
epoch_loss = 0;
y_pred = model(X)
loss = critereon(y_pred, y)
epoch_loss = loss.data
optimizer.zero_grad()
loss.backward()
optimizer.step()
print("Epoch: {} Loss: {}".format(epoch, epoch_loss))
# test the model
model.eval()
test_data = data_generator(1)
prediction = model(Variable(Tensor(test_data[0][0])))
print("Prediction: {}".format(prediction.data[0]))
print("Expected: {}".format(test_data[1][0]))
他们有办法获得更好的结果吗?我想知道是否应该尝试获得3个输出,分别称为a,b和c,以便y = a(x * x)+ b(x)+ c。但是我不知道如何实现它并训练我的神经网络。
答案 0 :(得分:0)
对于此问题,如果将具有1个Net()
层的Linear
视为Linear Regression
且具有包括[x^2, x]
在内的输入功能,可能会更容易。
import torch
from torch import Tensor
from torch.nn import Linear, MSELoss, functional as F
from torch.optim import SGD, Adam, RMSprop
from torch.autograd import Variable
import numpy as np
# define our data generation function
def data_generator(data_size=1000):
# f(x) = y = x^2 + 4x - 3
inputs = []
labels = []
# loop data_size times to generate the data
for ix in range(data_size):
# generate a random number between 0 and 1000
x = np.random.randint(2000) / 1000 # I edited here for you
# calculate the y value using the function x^2 + 4x - 3
y = (x * x) + (4 * x) - 3
# append the values to our input and labels lists
inputs.append([x*x, x])
labels.append([y])
return inputs, labels
# define the model
class Net(torch.nn.Module):
def __init__(self):
super(Net, self).__init__()
self.fc1 = Linear(2, 1)
def forward(self, x):
return self.fc1(x)
model = Net()
Epoch: 0 Loss: 33.75775909423828
Epoch: 1000 Loss: 0.00046704441774636507
Epoch: 2000 Loss: 9.437128483114066e-07
Epoch: 3000 Loss: 2.0870876138445738e-09
Epoch: 4000 Loss: 1.126847400112485e-11
Prediction: 5.355223655700684
Expected: [5.355224999999999]
您要查找的系数a
,b
,c
实际上是self.fc1
的权重和偏差:
print('a & b:', model.fc1.weight)
print('c:', model.fc1.bias)
# Output
a & b: Parameter containing:
tensor([[1.0000, 4.0000]], requires_grad=True)
c: Parameter containing:
tensor([-3.0000], requires_grad=True)
仅在5000个纪元中,所有收敛:a
-> 1,b
-> 4和c
-> -3。
该模型非常轻巧,只有三个参数,而不是:
(100 + 1) + (100 + 1) = 202 parameters in the old model
希望这对您有帮助!