我使用Python编码线性回归模型,但我无法将其扩展为多项式模型。是一个f * n矩阵,其中f是特征的数量,n是训练数据集的数量,我们需要多样性的顺序直到4。 `
def rec(it,r,arr,index,ind,num):
if index == r:
arr=numpy.append(arr,num)
return arr
if ind > 3:
return arr
num=num*it[ind]
#arr[index]=it[ind]
arr=rec(it,r,arr, index+1,ind,num );
arr=rec(it,r,arr, index,ind+1,num/it[ind] );
return arr
# Polynomial start from here .
for i in range(1,5):
for j in range(0,n):
arr=numpy.array([]) # it is a f*n matrix where f is the number of features and n is the number of training sets of data , and we need polymial order till 4 ,
arr=rec(it[j],i,arr,0,0,1)# Suppose there are 4 feature x1,x2,x3,x4 then it will consist of x1x2,x2x3,x1*x1,,,, x1x2x3x4
it[j]=append(it[j],arr)
if i==1:
b=numpy.array([1])
it[j]=append(it[j],b)
`