多项式回归

时间:2019-02-17 04:11:06

标签: python artificial-intelligence linear-regression

我想知道是否有人可以帮助我,以便了解如何将此代码(线性回归)更改为多项式回归。我试图不使用很多预制功能来确保我了解自己在做什么。

    # Importing Necessary Libraries
%matplotlib inline
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
plt.rcParams['figure.figsize'] = (20.0, 10.0)

# Reading Data
data = pd.read_csv('test.csv')
print(data.shape)
data.head()
# Collecting X and Y
X = data['a'].values
Y = data['b'].values
# Mean X and Y
mean_x = np.mean(X)
mean_y = np.mean(Y)

# Total number of values
m = len(X)

# Using the formula to calculate b1 and b2
numer = 0
denom = 0
for i in range(m):
    numer += (X[i] - mean_x) * (Y[i] - mean_y)
    denom += (X[i] - mean_x) ** 2
b1 = numer / denom
b0 = mean_y - (b1 * mean_x)

# Print coefficients
print(b1, b0)
max_x = np.max(X) + 100
min_x = np.min(X) - 100

# Calculating line values x and y
x = np.linspace(min_x, max_x, 1000)
y = b0 + b1 * x

# Ploting Line
plt.plot(x, y, color='#58b970', label='Regression Line')
# Ploting Scatter Points
plt.scatter(X, Y, c='#ef5423', label='Scatter Plot')

plt.xlabel('a')
plt.ylabel('b')
plt.legend()
plt.show()

现在我想从这段代码中“升级”它,使其作为三次多项式回归工作(3x(ax ^ 3 +bx²...)。有人可以帮助我吗?预先感谢。

1 个答案:

答案 0 :(得分:0)

以下是绘制多项式拟合器的示例:

import numpy, matplotlib
import matplotlib.pyplot as plt

xData = numpy.array([1.1, 2.2, 3.3, 4.4, 5.0, 6.6, 7.7, 0.0])
yData = numpy.array([1.1, 20.2, 30.3, 40.4, 50.0, 60.6, 70.7, 0.1])

polynomialOrder = 2 # example quadratic

# curve fit the test data
fittedParameters = numpy.polyfit(xData, yData, polynomialOrder)
print('Fitted Parameters:', fittedParameters)

modelPredictions = numpy.polyval(fittedParameters, xData)
absError = modelPredictions - yData

SE = numpy.square(absError) # squared errors
MSE = numpy.mean(SE) # mean squared errors
RMSE = numpy.sqrt(MSE) # Root Mean Squared Error, RMSE
Rsquared = 1.0 - (numpy.var(absError) / numpy.var(yData))
print('RMSE:', RMSE)
print('R-squared:', Rsquared)

print()


##########################################################
# graphics output section
def ModelAndScatterPlot(graphWidth, graphHeight):
    f = plt.figure(figsize=(graphWidth/100.0, graphHeight/100.0), dpi=100)
    axes = f.add_subplot(111)

    # first the raw data as a scatter plot
    axes.plot(xData, yData,  'D')

    # create data for the fitted equation plot
    xModel = numpy.linspace(min(xData), max(xData))
    yModel = numpy.polyval(fittedParameters, xModel)

    # now the model as a line plot
    axes.plot(xModel, yModel)

    axes.set_xlabel('X Data') # X axis data label
    axes.set_ylabel('Y Data') # Y axis data label

    plt.show()
    plt.close('all') # clean up after using pyplot

graphWidth = 800
graphHeight = 600
ModelAndScatterPlot(graphWidth, graphHeight)