我无法使用Keras flow_from_directory
来设置ImageDataGenerator
。
def get_generators():
train_image_generator = train_datagen.flow_from_directory(DATA_PATH + '/train_frames',batch_size=batch_size)
train_mask_generator = train_datagen.flow_from_directory(DATA_PATH + '/train_masks',batch_size=batch_size, class_mode='categorical')
val_image_generator = val_datagen.flow_from_directory(DATA_PATH + '/val_frames',batch_size=batch_size)
val_mask_generator = val_datagen.flow_from_directory(DATA_PATH + '/val_masks',batch_size=batch_size, class_mode='categorical')
train_generator = zip(train_image_generator, train_mask_generator)
val_generator = zip(val_image_generator, val_mask_generator)
return train_generator, val_generator;
train_gen, val_gen = generator_objects.get_generators()
results = m.fit_generator(train_gen, epochs=NO_OF_EPOCHS,
steps_per_epoch = (NO_OF_TRAINING_IMAGES//BATCH_SIZE),
callbacks=callbacks_list)
我的目录结构在下面,其中每个蒙版图像都是类位置的二进制图像,等于输入图像的大小。
/train_frames
/images
/1.jpg
/2.jpg
/train_masks
/0
/1.jpg
/2.jpg
/1
/1.jpg
/2.jpg
/2
....
我得到这个错误:
'AttributeError:'tuple'对象没有属性'shape'
我能够实现'flow'类型的ImageDataGenerator
,但是由于某种原因,flow_from_directory
给了我很多麻烦。
答案 0 :(得分:0)
尝试将class_mode='categorical'
更改为class_mode=None
。