在此列中使用数据时,请排除dplyr`mutate_at中的列

时间:2019-04-29 11:48:37

标签: r dplyr

我想用一个特定的year(按gender分组)重新缩放df中所有变量(但yeargender):

set.seed(1)
df <- data.frame(gender = c(rep("m", 5), rep("f", 5)), year = rep(1:5, 2), var_a = 1:10, var_b = 0:9)
df

   gender year var_a var_b
1       m    1     1     0
2       m    2     2     1
3       m    3     3     2
4       m    4     4     3
5       m    5     5     4
6       f    1     6     5
7       f    2     7     6
8       f    3     8     7
9       f    4     9     8
10      f    5    10     9

我可以使用以下方法生成期望的结果:

df %>% group_by(gender) %>% mutate(var_a = ifelse(year == 3, 0, var_a - var_a[year == 3])) %>%
  mutate(var_b = ifelse(year == 3, 0, var_b - var_b[year == 3]))

   gender  year var_a var_b
   <fct>  <int> <dbl> <dbl>
 1 m          1    -2    -2
 2 m          2    -1    -1
 3 m          3     0     0
 4 m          4     1     1
 5 m          5     2     2
 6 f          1    -2    -2
 7 f          2    -1    -1
 8 f          3     0     0
 9 f          4     1     1
10 f          5     2     2

但是,由于我的列太多,所以这不是一个选择。

所以我尝试了(没有成功):

df %>% group_by(gender) %>% mutate_at(vars(-gender, -year), ifelse(year == 3, 0, var_a - var_a[year == 3]))
  

ifelse(year == 3,0,var_a-var_a [year == 3])错误:对象   找不到“年份”

如何在仍读取这些列中的数据的同时,使用mutate_atvars(-col_name)(或替代方法)中排除列名?

这与this one

有关

2 个答案:

答案 0 :(得分:3)

mutate_at中使用职位

library(dplyr)

df %>%
  group_by(gender) %>%
  mutate_at(-c(1, 2), ~ifelse(year == 3, 0, . - .[year == 3]))

#  gender  year var_a var_b
#   <fct>  <int> <dbl> <dbl>
# 1 m          1    -2    -2
# 2 m          2    -1    -1
# 3 m          3     0     0
# 4 m          4     1     1
# 5 m          5     2     2
# 6 f          1    -2    -2
# 7 f          2    -1    -1
# 8 f          3     0     0
# 9 f          4     1     1
#10 f          5     2     2

以防万一,如果您事先不知道列的位置,可以先找到它

cols <- which(names(df) %in% c("gender", "year"))

df %>%
  group_by(gender) %>%
  mutate_at(-cols, ~ifelse(year == 3, 0, . - .[year == 3]))

或选择starts_with

的列
df %>%
  group_by(gender) %>%
  mutate_at(vars(starts_with("var")), ~ifelse(year == 3, 0, . - .[year == 3]))

答案 1 :(得分:3)

如果在函数之前添加~,则应该获得所需的输出。

library(dplyr)
#> 
#> Attaching package: 'dplyr'
#> The following objects are masked from 'package:stats':
#> 
#>     filter, lag
#> The following objects are masked from 'package:base':
#> 
#>     intersect, setdiff, setequal, union
set.seed(1)
df <- data.frame(gender = c(rep("m", 5),
                            rep("f", 5)), 
                 year = rep(1:5, 2), var_a = 1:10, var_b = 0:9)
df
#>    gender year var_a var_b
#> 1       m    1     1     0
#> 2       m    2     2     1
#> 3       m    3     3     2
#> 4       m    4     4     3
#> 5       m    5     5     4
#> 6       f    1     6     5
#> 7       f    2     7     6
#> 8       f    3     8     7
#> 9       f    4     9     8
#> 10      f    5    10     9

df %>%
  group_by(gender) %>% 
  mutate_at(vars(-gender, -year),
            ~ifelse(year == 3, 0, . - .[year == 3]))
#> # A tibble: 10 x 4
#> # Groups:   gender [2]
#>    gender  year var_a var_b
#>    <fct>  <int> <dbl> <dbl>
#>  1 m          1    -2    -2
#>  2 m          2    -1    -1
#>  3 m          3     0     0
#>  4 m          4     1     1
#>  5 m          5     2     2
#>  6 f          1    -2    -2
#>  7 f          2    -1    -1
#>  8 f          3     0     0
#>  9 f          4     1     1
#> 10 f          5     2     2

reprex package(v0.2.1)于2019-04-29创建

编辑: 在较早版本的dplyr中,您将使用funs(),但从dplyr 0.8.0起已弃用该软件

df %>%
  group_by(gender) %>% 
  mutate_at(vars(-gender, -year),
            funs(ifelse(year == 3, 0, . - .[year == 3])))