我在森林火灾样本数据集上应用套索回归和山脊回归,但是我的准确性太低,我不应该达到
我已经尝试过更改Alpha和训练设置值
const helperUpload = async (uploadPath, req, res,) => {
return new Promise((resolve, reject) => {
let upload = () => multer({
storage: new MulterAzureStorage({
azureStorageConnectionString: '...',
containerName: '...',
containerSecurity: '...',
})
}).single(uploadPath);
upload(req,res, function(err) {
console.log("inside callback");
if (err) {
console.log("unable to upload");
resolve(false);
} else if (req.file) {
console.log("File = "+JSON.stringify(req.file));
console.log("uploaded");
resolve(true);
}
});
});
}
答案 0 :(得分:0)
考虑您的问题:我的代码中没有任何LassoCV
回归。尝试一些ElasticNetCV(l1_ratio=[.1, .5, .7, .9, .95, .99, 1])
或RidgeCV
始终是找到合理的alpha值的良好开始。对于Ridge,LassoCV
是CV算法。与ElasticNetCV
和RidgeCV
相比,import pandas as pd
import numpy as np
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
from sklearn.compose import ColumnTransformer
from sklearn.impute import SimpleImputer
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression, LassoCV, ElasticNetCV
from sklearn.linear_model import Ridge, RidgeCV
forest = pd.read_csv('forestfires.csv')
#Coulmn ve row feaute adlarimi duzenledim
forest.month.replace(('jan','feb','mar','apr','may','jun','jul','aug','sep','oct','nov','dec'),(1,2,3,4,5,6,7,8,9,10,11,12), inplace=True)
forest.day.replace(('mon','tue','wed','thu','fri','sat','sun'),(1,2,3,4,5,6,7), inplace=True)
# iloc indeksin sırasıyla, loc indeksin kendisiyle işlem yapmaya olanak verir.Burada indeksledim
X = forest.iloc[:,0:12].values
y = forest.iloc[:,12].values
# 30 -70 olarak train test setlerimi ayirdim
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=3)
#x-y axis trainler arasina linear regressyon kurdum
lr = LinearRegression()
# The cross validation algorithms:
lasso_cv = LassoCV() # LassoCV will try to find the best alpha for you
# ElasticNetCV will try to find the best alpha for you, for a given set of combinations of Ridge and Alpha
enet_cv = ElasticNetCV()
ridge_cv = RidgeCV()
lr.fit(X_train, y_train)
lasso_cv.fit(X_train, y_train)
enet_cv.fit(X_train, y_train)
ridge_cv.fit(X_train, y_train)
#ridge regression modeli kurdum
rr = Ridge(alpha=0.01)
rr.fit(X_train, y_train)
rr100 = Ridge(alpha=100)
使用LOO-CV AND 采用固定的Alpha值集,因此,需要更多的用户处理最佳输出。以下面给定的代码示例为例:
print('LassoCV alpha:', lasso_cv.alpha_)
print('RidgeCV alpha:', ridge_cv.alpha_)
print('ElasticNetCV alpha:', enet_cv.alpha_, 'ElasticNetCV l1_ratio:', enet_cv.l1_ratio_)
ridge_alpha = ridge_cv.alpha_
enet_alpha, enet_l1ratio = enet_cv.alpha_, enet_cv.l1_ratio_
现在使用以下命令检查找到的alpha值:
RdigeCV
将新的ElasticNetCV
和/或l1_ratio
置于这些值的中心(<0
将忽略>1
的{{1}}和ElasticNetCV
):
enet_new_l1ratios = [enet_l1ratio * mult for mult in [.9, .95, 1, 1.05, 1.1]]
ridge_new_alphas = [ridge_alpha * mult for mult in [.9, .95, 1, 1.05, 1.1]]
# fit Enet and Ridge again:
enet_cv = ElasticNetCV(l1_ratio=enet_new_l1ratios)
ridge_cv = RidgeCV(alphas=ridge_new_alphas)
enet_cv.fit(X_train, y_train)
ridge_cv.fit(X_train, y_train)
这应该是为模型找到合适的alpha值和/或l1比率的第一步。当然,其他步骤,例如特征工程和选择正确的模型(f.i. Lasso:执行特征选择),应先找到合适的参数。 :)