我的数据框看起来像这样
>df
ds A B C
01/01/2010 4 2 1
02/01/2010 2 9 3
03/01/2010 1 3 0
其中A和B属于类别1,C属于类别2。
我想将其转换为:
ds Category Company Value
01/01/2010 1 A 4
01/01/2010 1 B 2
01/01/2010 2 C 1
以此类推,以便以后绘制。
答案 0 :(得分:2)
df['ds'] = pd.to_datetime(df['ds'], format='%d/%m/%Y')
df = df.melt('ds', var_name='Company')
如果可能有多个类别,请创建字典并按Series.map
创建新列:
d = {1:['A','B'], 2:['C']}
#swap key values in dict
#http://stackoverflow.com/a/31674731/2901002
d1 = {k: oldk for oldk, oldv in d.items() for k in oldv}
df['Category'] = df['Company'].map(d1)
#alternative1
#df['Category'] = np.where(df['Company'] == 'C', 2, 1)
#alternative2
#df['Category'] = np.where(df['Company'].isin(['A','B']), 1, 2)
df = df.sort_values(['ds','Company']).reset_index(drop=True)
或将DataFrame.set_index
与DataFrame.stack
:
df['ds'] = pd.to_datetime(df['ds'], format='%d/%m/%Y')
df = df.set_index('ds').stack().rename_axis(('ds','Company')).reset_index(name='value')
df['Category'] = np.where(df['Company'] == 'C', 2, 1)
print (df)
ds Company value Category
0 2010-01-01 A 4 1
1 2010-01-01 B 2 1
2 2010-01-01 C 1 2
3 2010-01-02 A 2 1
4 2010-01-02 B 9 1
5 2010-01-02 C 3 2
6 2010-01-03 A 1 1
7 2010-01-03 B 3 1
8 2010-01-03 C 0 2
答案 1 :(得分:1)