我写完了傅里叶算法。它在文本文件上实现了Cooley-Tukey和蛮力(Fourier变换)方法,其中一列表示时间(索引),另一列表示温度(开尔文)(值)。我的代码接收一个txt文件,然后执行暴力破解或cooley-tukey,最后将其输出为txt文件。蛮力只输出实数,Cooley-Tukey输出实数和虚数。
我也完全不熟悉物理学...我认为这是数学上的缺陷:
蛮力算法(.cpp文件):
void Brute_force<T>::DFT(std::vector<double>* index,
std::vector<double>* value,
std::vector<complex<double>> &result)
{
// For each output element
for (size_t freq = 0; freq < index->size(); freq +=
this->frequency_step)
{
complex<double> sum(0.0, 0.0);
// For each input element
for (size_t time = 0; time < index->size(); time++)
{
double angle = 2 * M_PI * time * freq / index-
>size();
sum = sum + index->at(time) * exp(-angle);
}
result.push_back(sum);
}
}
template class Brute_force<double>;
Cooley-Tukey算法(.cpp文件):
void Cooley_tukey<T>::FFT(std::vector<T>* index, std::vector<T>* value, std::vector<complex<T>>& result)
{
std::cout << index->size() << std::endl;
// Make copy of array and apply window
for (unsigned int time = 0; time < index->size(); time++)
{
result.push_back(index->at(time));
std::cout << result.at(time) << std::endl;
//temp.at(time) *= 1; // Window
}
// Start recursion function to split up the tasks
FFT_REC(result, index->size());
}
template<typename T>
void Cooley_tukey<T>::FFT_REC(std::vector<complex<T>>& result, int total_time)
{
// Check if it is split up enough
if (total_time >= 2)
{
// Split even and odds up
std::vector<complex<T>> odd;
std::vector<complex<T>> even;
odd.reserve(total_time/2);
even.reserve(total_time/2);
for (int i = 0; i < total_time / 2; i++)
{
even.push_back(result.at(i*2));
odd.push_back(result.at(i*2+1));
}
// DFT portion of FFT - calculates after everything has been split up through FFT_REC
for (int frequency = 0; frequency < total_time / 2; frequency += this->frequency_step)
{
std::complex<T> t = exp(std::complex<T>(0, -2 * M_PI * frequency / total_time)) * odd.at(frequency);
//Result of Cooley-Tukey algorithm:
//*This gives us the frequency values at certain times
result.at(frequency) = even.at(frequency) + t;
result.at(total_time / 2 + frequency) = even.at(frequency) - t;
}
}
}
强制结果(txt文件)(仅一部分):
6.003e+06 0
736788 0
344823 0
224583 0
166575 0
132447 0
109977 0
94064.6 0
82206.1 0
73027.7 0
65713.2 0
59747.3 0
Cooley-Tukey结果(txt文件)(仅一部分):
4001 0
4004.99 -6.28946
4008.96 -12.5914
4012.91 -18.9058
4016.84 -25.2326
4020.75 -31.5716
4024.64 -37.9229
4028.51 -44.2865
4032.36 -50.6621
4036.19 -57.0498
4040 -63.4494
答案 0 :(得分:2)
真实价值的结果非常可疑。因此,我快速浏览了该代码。
您的指数中缺少 i 。您计算一个实数值的指数,从而得出一个实数值。您需要使用
std::exp(std::complex<double>{0,-angle})
我没有看其余的代码。正如我在评论中所说,您应该将结果与已知正确的现有工具(MATLAB,Python / NumPy等)的结果进行比较,以缩小问题陈述的范围。