我在这里遵循了CUDA简介(https://devblogs.nvidia.com/even-easier-introduction-cuda/)。
并编写了与作者相同的程序。但是,在我使用GTX 1080ti的服务器上的结果甚至比作者的GT 750M还要慢。
怎么可能?
代码:
#include <iostream>
#include <math.h>
// Kernel function to add the elements of two arrays
__global__
void add(int n, float *x, float *y) {
int index = blockIdx.x * blockDim.x + threadIdx.x;
int stride = blockDim.x * gridDim.x;
for (int i = index; i < n; i+=stride)
y[i] = x[i] + y[i];
}
int main(int argc, char *argv[])
{
int N = 1<<20;
float *x, *y;
// Allocate Unified Memory – accessible from CPU or GPU
cudaMallocManaged(&x, N*sizeof(float));
cudaMallocManaged(&y, N*sizeof(float));
// initialize x and y arrays on the host
for (int i = 0; i < N; i++) {
x[i] = 1.0f;
y[i] = 2.0f;
}
int block_size = 256;
int num_blocks = (N + block_size - 1) / block_size;
// Run kernel on 1M elements on the GPU
add<<<num_blocks, block_size>>>(N, x, y);
// Wait for GPU to finish before accessing on host
cudaDeviceSynchronize();
// Check for errors (all values should be 3.0f)
float maxError = 0.0f;
for (int i = 0; i < N; i++)
maxError = fmax(maxError, fabs(y[i]-3.0f));
std::cout << "Max error: " << maxError << std::endl;
// Free memory
cudaFree(x);
cudaFree(y);
return 0;
}
我的服务器在1080ti上的结果是4.1499ms,而在750m上的作者是0.68ms。
与作者一样,我用nvprof
命令测量了时间。
像作者一样,我使用默认设置nvcc
编译了程序。