我正在尝试为.csv文件中的数据集创建回归模型,但出现错误
hape必须为2级,但对于'MatMul_4'(op:'MatMul'),其hape必须为0级 输入形状:[],[3]。
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import tensorflow as tf
#importing data
dataset = pd.read_csv('Salary_Data.csv')
x_data = dataset.iloc[:,0].values
y_data = dataset.iloc[:,1].values
#split data into train and test
from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test =train_test_split(x_data, y_data, test_size = 0.3, random_state = 0, shuffle = True)
#regression using TF
m = tf.Variable(0.45, dtype= tf.float64)
b = tf.Variable(0.15, dtype= tf.float64)
batchsize = 3
xph = tf.placeholder(tf.float64,[batchsize])
yph = tf.placeholder(tf.float64,[batchsize])
y_model = tf.add(tf.matmul(m, xph), b)
error = tf.reduce_mean(tf.square(yph - y_model))
optimizer = tf.train.GradientDescentOptimizer(learning_rate= 0.001)
train = optimizer.minimize(error)
init = tf.global_variables_initializer()
#session
with tf.Session() as sess:
sess.run(init)
batches = 7
for i in range(batches):
ranid = np.random.randint(len(x_train),size = batchsize)
feed = {xph:x_train[ranid],yph:y_train[ranid]}
sess.run(train,feed_dict = feed)
teta1, teta0 = sess.run([m,b])
plt.scatter(x_train, y_train, color = 'red')
我也尝试使用运算符直接相乘,但是出现相同的错误
答案 0 :(得分:0)
m
只是一个标量变量,因此您无法对其进行矩阵乘法。您说直接相乘无效,但对我来说似乎很好:
y_model = m*xph + b