我有一个18个线性PDE的系统。但是,它们是非常笨拙的PDE。每次我尝试使用FiPy解决耦合PDE的系统时,都会出现错误。我自己修复了其中的大多数,但似乎无法超越。
首先,您需要一个方程式列表,稍后将在程序中添加它:
import time
from fipy import Variable, FaceVariable, CellVariable, Grid1D, Grid2D, ExplicitDiffusionTerm, TransientTerm, DiffusionTerm, Viewer,PowerLawConvectionTerm, ImplicitSourceTerm
from fipy.tools import numerix
import math
import numpy as np
import sympy as sp
Temperature = 500.0 #Temperature in Celsius
Temp_K = Temperature + 273.15 #Temperature in Kelvin
Ea = [342,7,42,45,34] #Activation energy in order from the list excel/word file
#Frequency factor ko (Initial k)
k_0 =[5.9 * (10**15), 1.3 * (10**13), 1.0 * (10**12), 5.0 * (10**11), 1.2 * (10**13)]
fk1 = [math.exp((-1.0 * x)/(R*Temp_K)) for x in Ea] #Determines k value at given temperature value (exp(-Ea/R*T))
final_k = [fk1*k_0 for fk1,k_0 in zip(fk1,k_0)] #Multiplys by the inital k value to determine the k value at the given temperature (ko * exp(-Ea/R*T))
final_kcm = [x for x in final_k]
def rhs(eq):
eq_list = [-1.0*final_kcm[0]*EDC - final_kcm[1]*EDC*R1 - final_kcm[2]*EDC*R2 - final_kcm[3]*EDC*R4 - final_kcm[4]*EDC*R5 - final_kcm[5]*EDC*R6,
final_kcm[2]*EDC*R2 - final_kcm[8]*EC*R1 + final_kcm[13]*VCM*R2,
final_kcm[1]*EDC*R1 + final_kcm[6]*R2*R1 + final_kcm[7]*R1*R3 + final_kcm[8]*R1*EC + final_kcm[9]*R1*C11 + final_kcm[10]*R1*C112 + final_kcm[12]*R1*VCM + 2.0*final_kcm[20]*R1*C2H2,
2.0*final_kcm[20]*R2*C2H2,
final_kcm[15]*R5*VCM,
return eq_list[eq]
这是我用来生成PDE系统的程序的其余部分。
EDC = CellVariable(mesh=mesh, hasOld=True, value=10)
EC = CellVariable(mesh=mesh, hasOld=True, value=0)
HCl = CellVariable(mesh=mesh, hasOld=True, value=0)
Coke = CellVariable(mesh=mesh, hasOld=True, value=0)
CP = CellVariable(mesh=mesh, hasOld=True, value=0)
EDC.constrain(10, mesh.facesLeft)
EC.constrain(0., mesh.facesLeft)
HCl.constrain(0., mesh.facesLeft)
Coke.constrain(0., mesh.facesLeft)
CP.constrain(0., mesh.facesLeft)
nsp =18
u_x = [[ [0,]*nsp for n in range(nsp) ]]
for z in range(nsp):
u_x[0][z][z] = 1.0
eq0 = TransientTerm(var = EDC) == PowerLawConvectionTerm(coeff = u_x, var = EDC) + ImplicitSourceTerm(rhs(0),var = EDC)
eq1 = TransientTerm(var = EC) == PowerLawConvectionTerm(coeff = u_x, var = EC) + ImplicitSourceTerm(rhs(1),var = (EC))
eq2 = TransientTerm(var = HCl) == PowerLawConvectionTerm(coeff = u_x, var = HCl) + ImplicitSourceTerm(rhs(2),var = (HCl))
eq3 = TransientTerm(var = Coke) == PowerLawConvectionTerm(coeff = u_x, var = Coke) + ImplicitSourceTerm(rhs(3),var = (Coke))
eq4 = TransientTerm(var = CP) == PowerLawConvectionTerm(coeff = u_x, var = CP) + ImplicitSourceTerm(rhs(4),var = (CP))
eqn = eq0 & eq1 & eq2 & eq3 & eq4
if __name__ == '__main__':
viewer = Viewer(vars = (EDC,EC,HCl,Coke,CP))
viewer.plot()
for t in range(1):
EDC.updateOld()
EC.updateOld()
HCl.updateOld()
Coke.updateOld()
CP.updateOld()
eqn.solve(dt=1.e-3)
很抱歉,很长的代码,但我真的无法以其他任何方式展示它。无论如何,这是它返回的错误:
文件 “ C:\ Users \ tjcze \ Anaconda3 \ lib \ site-packages \ fipy \ matrices \ scipyMatrix.py”, addAt中的第218行 assert(len(id1)== len(id2)== len(vector))
AssertionError
如何使该系统正常工作?
答案 0 :(得分:0)
该错误是由于您尝试使用u_x
而引起的。 u_x
应该是等级1 FaceVariable
。
其形状应为#dims x #faces(或#dims x 1);它不应该是(#eqns x #eqns)。
设置u_x = [1.]
摆脱了AssertionError
。
然后您将收到一系列警告:
UserWarning: sweep() or solve() are likely to produce erroneous results when `var` does not contain floats.
通过用浮点数(例如
)初始化所有CellVariables
来解决此问题
EDC = CellVariable(mesh=mesh, hasOld=True, value=10.)
代替
EDC = CellVariable(mesh=mesh, hasOld=True, value=10)
进行这些更改后,代码将运行。它没有做任何有趣的事,但这不足为奇,因为在这个阶段它方法太复杂了。 18个方程式只会混淆事物。我强烈建议您使用<= 2个方程式解决此问题。
在这一点上,您的方程式根本没有耦合(eq0
仅隐含地依赖于EDC
,eq1
仅依赖于EC
等)。这没错,但不是很有用。当然,eq = eq0 & eq1 & ...
语法中没有意义。 EDC是唯一有可能发展的变量,它是恒定的,因此也不会进化。
将来,请提供实际运行的示例(无论如何,直到错误点)。