我正在通过Google Colabs中的ML示例进行工作。该文档说,当我运行model.fit时,会显示损失和准确性指标。我没有看到任何损失或准确性指标。
我已在model.compile中将accuracy
添加为指标
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
在拟合模型时,如何显示损耗和精度指标?
答案 0 :(得分:2)
您可以使用verbose flag并将其设置为2,以显示每个纪元1行,或者为进度条显示1行。
答案 1 :(得分:-1)
import keras
import numpy as np
model = keras.Sequential()
model.add(keras.layers.Dense(10, input_shape=(5, 6)))
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy')
x_data = np.random.random((32, 5, 6))
y_data = np.random.randint(0, 9, size=(32,5,1))
model.fit(x=x_data, y=y_data, batch_size=16, epochs=3)
Use tf.cast instead.
Epoch 1/3
32/32 [==============================] - 1s 20ms/step - loss: 9.9664
Epoch 2/3
32/32 [==============================] - 0s 293us/step - loss: 9.9537
Epoch 3/3
32/32 [==============================] - 0s 164us/step - loss: 9.9425
我希望它能解决您的问题。