我试图理解基数排序,但是在理解实现实际代码的基础变更时遇到了问题。这是我用来学习基数排序的代码,我将尝试解释我不了解的内容。
此代码由GeeksForGeeks编写:
// C++ implementation of Radix Sort
#include<iostream>
using namespace std;
// A utility function to get maximum value in arr[]
int getMax(int arr[], int n)
{
int mx = arr[0];
for (int i = 1; i < n; i++)
if (arr[i] > mx)
mx = arr[i];
return mx;
}
// A function to do counting sort of arr[] according to
// the digit represented by exp.
void countSort(int arr[], int n, int exp)
{
int output[n]; // output array
int i, count[10] = {0};
// Store count of occurrences in count[]
for (i = 0; i < n; i++)
count[ (arr[i]/exp)%10 ]++;
// Change count[i] so that count[i] now contains actual
// position of this digit in output[]
for (i = 1; i < 10; i++)
count[i] += count[i - 1];
// Build the output array
for (i = n - 1; i >= 0; i--)
{
output[count[ (arr[i]/exp)%10 ] - 1] = arr[i];
count[ (arr[i]/exp)%10 ]--;
}
// Copy the output array to arr[], so that arr[] now
// contains sorted numbers according to current digit
for (i = 0; i < n; i++)
arr[i] = output[i];
}
// The main function to that sorts arr[] of size n using
// Radix Sort
void radixsort(int arr[], int n)
{
// Find the maximum number to know number of digits
int m = getMax(arr, n);
// Do counting sort for every digit. Note that instead
// of passing digit number, exp is passed. exp is 10^i
// where i is current digit number
for (int exp = 1; m/exp > 0; exp *= 10)
countSort(arr, n, exp);
}
// A utility function to print an array
void print(int arr[], int n)
{
for (int i = 0; i < n; i++)
cout << arr[i] << " ";
}
// Driver program to test above functions
int main()
{
int arr[] = {170, 45, 75, 90, 802, 24, 2, 66};
int n = sizeof(arr)/sizeof(arr[0]);
radixsort(arr, n);
print(arr, n);
return 0;
}
所以我遇到的一个问题是,我需要在用户选择其基数的地方进行基数可变的排序。我的理解是,基数只是函数的表示形式,但不确定如何将其实现为基数排序。如果我继续使用基数10,它将对排序算法有何影响(在复杂度之外)?
答案 0 :(得分:2)
您拥有的代码适用于10级。每次在以10为基数的代码中看到硬编码10时,要对其进行更改,就需要使每个事件动态化。
基数排序的复杂度不取决于基数,而是始终为O(kn)[键的长度*键的n]。更改基数有助于减少执行排序所需的通过次数,但会增加每次通过中计算的存储桶数量。除此之外,任何碱基都将排序并产生相同的结果。
答案 1 :(得分:0)
我遇到了这个问题,现在没有正确的答案。
首先要注意的是:
这可能不是Radix的最佳算法,但这是问题的答案。
//b is the base you want
//exp is the value used for the division
void counting_sort(int* A, int n, int exp, int b) {
int * C = new int[b];
int* B = new int[n];
for (int i = 0; i < b; i++)
{
C[i] = 0;
}
for (int i = 0; i < n; i++)
{
C[(A[i] / exp) % b]++;
}
for (int i = 1; i < b; i++)
{
C[i] += C[i - 1];
}
for (int i = n - 1; i >= 0; i--)
{
B[C[(A[i] / exp) % b] - 1] = A[i];
C[(A[i] / exp) % b]--;
}
for (int i = 0; i < n; i++)
{
A[i] = B[i];
}
delete[] B;
delete[] C;
}
int getMax(int* A, int n) {
int max = A[0];
for (int i = 1; i < n; i++) {
if (A[i] > max) {
max = A[i];
}
}
return max;
}
void radix_sort(int* A, int n) {
long long max = (long long)getMax(A, n);
long long base = 8// whatever base you need, I used ll, since long wasn't big enough for my needs (n = 200000).
for (long long exp = 1; max / exp > 0; exp *= base) {
counting_sort(A, n, exp, base);
}
}
基本上就是这样,但是我将添加基数2 ^(log n)
的代码。long long getBase(int* A, int n) {
long long log = (long long) log2(n);
return (long long)pow(2, log);
}
void radix_sort(int* A, int n) {
long long max = (long long)getMax(A, n);
long long base = getBase(A, n);
for (long long exp = 1; max / exp > 0; exp *= base) {
counting_sort(A, n, exp, base);
}
}
如果阅读此书的人有任何疑问,请检查我的个人资料。