因此,我正在为学校项目尝试不同类型的Radix排序,其中我们必须尽快排序500,000个随机整数(我自己生成的整数,每个整数的范围在0到MaxValue之间)。我首先对10个LSD(最低有效数字)基数进行了排序,平均排序时间为110至115ms,可对500,000个随机整数进行排序。这是它的代码:
public static int[] RadixSort(int[] RandomNumbers)
{
List<int>[] Buckets = new List<int>[10];
int singleDigit = 0;
int[] temp;
int[] mult = new int[10] {1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000, 1000000000};
for (int z = 0; z < 10; z++)
{
Buckets[0] = new List<int>();
Buckets[1] = new List<int>();
Buckets[2] = new List<int>();
Buckets[3] = new List<int>();
Buckets[4] = new List<int>();
Buckets[5] = new List<int>();
Buckets[6] = new List<int>();
Buckets[7] = new List<int>();
Buckets[8] = new List<int>();
Buckets[9] = new List<int>();
if (z == 0)
{
temp = (int[])RandomNumbers.Clone();
}
else
{
temp = (int[])RandomNumbers.Clone();
for (int i = 0; i < SIZE; i++)
{
temp[i] /= (mult[z]);
}
}
for (int i = 0; i < SIZE; i++)
{
singleDigit = temp[i] % 10;
Buckets[singleDigit].Add(RandomNumbers[i]);
}
List<int> NewList = new List<int>(SIZE);
for (int i = 0; i < 10; i++)
{
NewList.AddRange(Buckets[i]);
}
int[] NewArray = NewList.ToArray();
RandomNumbers = NewArray;
}
return RandomNumbers;
}
但是,我听说在二进制Radix排序中使用二进制速度更快。因此,我创建了一个基于掩码的位移基Radix排序,该排序总体上看起来不太混乱,并且内部执行的操作较少,但是其平均排序速度约为250ms。这是它的代码:
public static int[] BitShiftRadixSort(int[] RandomNumbers)
{
List<int>[] Buckets = new List<int>[2];
int binary;
int mask;
for (int shift = 0; shift < 32; shift++)
{
Buckets[0] = new List<int>(SIZE);
Buckets[1] = new List<int>(SIZE);
mask = 1 << shift;
for (int i = 0; i < SIZE; i++)
{
binary = RandomNumbers[i] & mask;
if (binary != 0)
{
Buckets[1].Add(RandomNumbers[i]);
}
else
{
Buckets[0].Add(RandomNumbers[i]);
}
}
List<int> NewList = new List<int>(SIZE);
for (int i = 0; i < 2; i++)
{
NewList.AddRange(Buckets[i]);
}
int[] NewArray = NewList.ToArray();
RandomNumbers = NewArray;
}
return RandomNumbers;
}
我期望位移比LSD Radix排序快,但事实并非如此。 C#中的数学运算是否进行了优化?我会感谢每个人的投入!
答案 0 :(得分:0)
根据Matt Timmermans建议使用基数256,此版本的无符号整数对于500,000个32位无符号整数大约需要10毫秒。对于有符号整数,您需要对符号位进行补充,并将其视为无符号整数(然后对返回符号进行补充)。
using System;
using System.Collections.Generic;
using System.Diagnostics;
using System.Text;
namespace RadixSort
{
class Program
{
static void RadixSort(uint [] a, uint count)
{
uint [,] mIndex = new uint [4,256]; // count / index matrix
uint [] b = new uint [count]; // allocate temp array
uint i,j,m,n;
uint u;
for(i = 0; i < count; i++){ // generate histograms
u = a[i];
for(j = 0; j < 4; j++){
mIndex[j,(u & 0xff)]++;
u >>= 8;
}
}
for(j = 0; j < 4; j++){ // convert to indices
m = 0;
for(i = 0; i < 256; i++){
n = mIndex[j,i];
mIndex[j,i] = m;
m += n;
}
}
for(j = 0; j < 4; j++){ // radix sort
for(i = 0; i < count; i++){ // sort by current lsb
u = a[i];
m = (u>>((int)(j<<3)))&0xff;
b[mIndex[j,m]++] = u;
}
uint [] t = a; // swap references
a = b;
b = t;
}
}
static void Main(string[] args)
{
const int SIZE = 500000;
uint [] a = new uint[SIZE];
uint u;
Random r = new Random(1);
Stopwatch sw = new Stopwatch();
for (uint i = 0; i < a.Length; i++)
{
u = (uint)r.Next(1 << 16);
u = (u << 16) | (uint)r.Next(1 << 16);
a[i] = u;
}
sw.Start();
RadixSort(a, (uint)a.Length);
sw.Stop();
for (uint i = 1; i < a.Length; i++)
{
if(a[i] < a[i-1])
{
Console.WriteLine("failed");
break;
}
}
Console.WriteLine("milliseconds: {0:D}\n",sw.ElapsedMilliseconds);
}
}
}