我正在清理data frame
中的Sumcription栏中的内容,并尝试执行3件事:
删除停用词
import spacy
nlp = spacy.load('en_core_web_sm', parser=False, entity=False)
df['Tokens'] = df.Sumcription.apply(lambda x: nlp(x))
spacy_stopwords = spacy.lang.en.stop_words.STOP_WORDS
spacy_stopwords.add('attach')
df['Lema_Token'] = df.Tokens.apply(lambda x: " ".join([token.lemma_ for token in x if token not in spacy_stopwords]))
但是,例如,当我打印时:
df.Lema_Token.iloc[8]
输出中仍然包含attach这个词:
attach poster on the wall because it is cool
为什么不删除停用词?
我也尝试过:
df['Lema_Token_Test'] = df.Tokens.apply(lambda x: [token.lemma_ for token in x if token not in spacy_stopwords])
但是str attach
仍然出现。
答案 0 :(得分:1)
import spacy
import pandas as pd
# Load spacy model
nlp = spacy.load('en', parser=False, entity=False)
# New stop words list
customize_stop_words = [
'attach'
]
# Mark them as stop words
for w in customize_stop_words:
nlp.vocab[w].is_stop = True
# Test data
df = pd.DataFrame( {'Sumcription': ["attach poster on the wall because it is cool",
"eating and sleeping"]})
# Convert each row into spacy document and return the lemma of the tokens in
# the document if it is not a sotp word. Finally join the lemmas into as a string
df['Sumcription_lema'] = df.Sumcription.apply(lambda text:
" ".join(token.lemma_ for token in nlp(text)
if not token.is_stop))
print (df)
输出:
Sumcription Sumcription_lema
0 attach poster on the wall because it is cool poster wall cool
1 eating and sleeping eat sleep