3D物理模拟需要访问着色器中相邻顶点的位置和属性,以计算顶点的新位置。 2D版本有效,但在将解决方案移植到3D时遇到麻烦。翻转两个3D纹理似乎是正确的,输入一个纹理的x,y和z坐标集,并获得vec4,其中包含相邻点的位置-速度-加速度数据,可用于计算每个顶点的新位置和速度。 2D版本使用1个带有帧缓冲区的画图调用将所有生成的gl_FragColors保存到sampler2D。我想使用framebuffer对sampler3D进行相同操作。但是看起来好像在3D中使用帧缓冲区,我需要在第二个3D纹理时一次写入一个+层,直到所有层都被保存为止。我对将顶点网格映射到纹理的相对x,y,z坐标以及如何将其分别保存到图层感到困惑。在2D版本中,写入帧缓冲区的gl_FragColor直接映射到画布的2D x-y坐标系,每个像素都是一个顶点。但是我不明白如何确保将包含3D顶点位置-速度数据的gl_FragColor写入纹理,以使其始终正确映射到3D顶点。
这适用于片段着色器中的2D:
vec2 onePixel = vec2(1.0, 1.0)/u_textureSize;
vec4 currentState = texture2D(u_image, v_texCoord);
float fTotal = 0.0;
for (int i=-1;i<=1;i+=2){
for (int j=-1;j<=1;j+=2){
if (i == 0 && j == 0) continue;
vec2 neighborCoord = v_texCoord + vec2(onePixel.x*float(i), onePixel.y*float(j));
vec4 neighborState;
if (neighborCoord.x < 0.0 || neighborCoord.y < 0.0 || neighborCoord.x >= 1.0 || neighborCoord.y >= 1.0){
neighborState = vec4(0.0,0.0,0.0,1.0);
} else {
neighborState = texture2D(u_image, neighborCoord);
}
float deltaP = neighborState.r - currentState.r;
float deltaV = neighborState.g - currentState.g;
fTotal += u_kSpring*deltaP + u_dSpring*deltaV;
}
}
float acceleration = fTotal/u_mass;
float velocity = acceleration*u_dt + currentState.g;
float position = velocity*u_dt + currentState.r;
gl_FragColor = vec4(position,velocity,acceleration,1);
这是我在片段着色器中3D尝试的方法:#version 300 es
vec3 onePixel = vec3(1.0, 1.0, 1.0)/u_textureSize;
vec4 currentState = texture(u_image, v_texCoord);
float fTotal = 0.0;
for (int i=-1; i<=1; i++){
for (int j=-1; j<=1; j++){
for (int k=-1; k<=1; k++){
if (i == 0 && j == 0 && k == 0) continue;
vec3 neighborCoord = v_texCoord + vec3(onePixel.x*float(i), onePixel.y*float(j), onePixel.z*float(k));
vec4 neighborState;
if (neighborCoord.x < 0.0 || neighborCoord.y < 0.0 || neighborCoord.z < 0.0 || neighborCoord.x >= 1.0 || neighborCoord.y >= 1.0 || neighborCoord.z >= 1.0){
neighborState = vec4(0.0,0.0,0.0,1.0);
} else {
neighborState = texture(u_image, neighborCoord);
}
float deltaP = neighborState.r - currentState.r; //Distance from neighbor
float springDeltaLength = (deltaP - u_springOrigLength[counter]);
//Add the force on our point of interest from the current neighbor point. We'll be adding up to 26 of these together.
fTotal += u_kSpring[counter]*springDeltaLength;
}
}
}
float acceleration = fTotal/u_mass;
float velocity = acceleration*u_dt + currentState.g;
float position = velocity*u_dt + currentState.r;
gl_FragColor = vec4(position,velocity,acceleration,1);
写完这些之后,我继续阅读,发现帧缓冲区不能同时访问sampler3D的所有层进行写入。我需要以某种方式一次处理1-4层。我既不确定如何执行此操作,也不确定gl_FragColor是否位于正确图层上的正确像素。
我在SO上找到了这个答案: Render to 3D texture webgl2 它演示了一次在帧缓冲区中写入多个图层的过程,但是我没有看到如何通过一个绘制调用将其与片段着色器等同,自动运行1,000,000次(100 x 100 x 100 ...(长x宽) x高度)),每次都用位置-速度-加速度数据填充sampler3D中的右像素,然后我可以将其翻转以用于下一次迭代。
我还没有结果。我希望以编程方式制作第一个sampler3D,使用它生成保存在第二个sampler3D中的新顶点数据,然后切换纹理并重复。
答案 0 :(得分:1)
WebGL是基于目标的。这意味着它将对要写入目标的每个结果执行1次操作。可以设置的唯一目的地是2D平面中的点(像素的平方),直线和三角形。这意味着写入3D纹理将需要分别处理每个平面。充其量,您可以通过在帧缓冲区中设置多个附件(最多允许的最大附件数)来在N为4到8的地方分别制作N个平面
所以我假设您了解如何一次渲染到100个图层1。在初始化时,要么制作100个帧缓冲区,然后将每个帧附加不同的层。或者,在渲染时,使用不同的附件更新单个帧缓冲区。知道会发生多少验证后,我会选择制作100个帧缓冲区
所以
const framebuffers = [];
for (let layer = 0; layer < numLayers; ++layer) {
const fb = gl.createFramebuffer();
gl.bindFramebuffer(gl.FRAMEBUFFER, fb);
gl.framebufferTextureLayer(gl.FRAMEBUFFER, gl.COLOR_ATTACHMENT0, texture,
0, layer);
framebuffers.push(fb);
}
现在在渲染时渲染到每个图层
framebuffers.forEach((fb, layer) => {
gl.bindFramebuffer(gl.FRAMEBUFFER, fb);
// pass in the layer number to the shader it can use for calculations
gl.uniform1f(layerLocation, layer);
....
gl.drawXXX(...);
});
WebGL1不支持3D纹理,因此我们知道您正在使用WebGL2,因为您提到使用sampler3D
。
在WebGL2中,通常在着色器顶部使用#version 300 es
表示要使用更现代的GLSL ES 3.00。
要绘制多层,首先需要弄清楚要渲染到的层数。 WebGL2一次至少支持4个层,因此我们可以假设4个层。为此,您需要在每个帧缓冲区上附加4层
const layersPerFramebuffer = 4;
const framebuffers = [];
for (let baseLayer = 0; baseLayer < numLayers; baseLayer += layersPerFramebuffer) {
const fb = gl.createFramebuffer();
gl.bindFramebuffer(gl.FRAMEBUFFER, fb);
for (let layer = 0; layer < layersPerFramebuffer; ++layer) {
gl.framebufferTextureLayer(gl.FRAMEBUFFER, gl.COLOR_ATTACHMENT0 + layer, texture, 0, baseLayer + layer);
}
framebuffers.push(fb);
}
GLSL ES 3.0着色器不使用gl_FragCoord
,而是使用用户定义的输出,因此我们将声明一个数组输出
out vec4 ourOutput[4];
,然后使用它,就像您以前使用gl_FragColor
一样,除了添加索引。下面我们处理4层。我们仅传递v_texCoord
的vec2,并基于baseLayerTexCoord
计算第三个坐标,这是我们在每次绘制调用中传递的内容。
varying vec2 v_texCoord;
uniform float baseLayerTexCoord;
vec4 results[4];
vec3 onePixel = vec3(1.0, 1.0, 1.0)/u_textureSize;
const int numLayers = 4;
for (int layer = 0; layer < numLayers; ++layer) {
vec3 baseTexCoord = vec3(v_texCoord, baseLayerTexCoord + onePixel * float(layer));
vec4 currentState = texture(u_image, baseTexCoord);
float fTotal = 0.0;
for (int i=-1; i<=1; i++){
for (int j=-1; j<=1; j++){
for (int k=-1; k<=1; k++){
if (i == 0 && j == 0 && k == 0) continue;
vec3 neighborCoord = baseTexCoord + vec3(onePixel.x*float(i), onePixel.y*float(j), onePixel.z*float(k));
vec4 neighborState;
if (neighborCoord.x < 0.0 || neighborCoord.y < 0.0 || neighborCoord.z < 0.0 || neighborCoord.x >= 1.0 || neighborCoord.y >= 1.0 || neighborCoord.z >= 1.0){
neighborState = vec4(0.0,0.0,0.0,1.0);
} else {
neighborState = texture(u_image, neighborCoord);
}
float deltaP = neighborState.r - currentState.r; //Distance from neighbor
float springDeltaLength = (deltaP - u_springOrigLength[counter]);
//Add the force on our point of interest from the current neighbor point. We'll be adding up to 26 of these together.
fTotal += u_kSpring[counter]*springDeltaLength;
}
}
}
float acceleration = fTotal/u_mass;
float velocity = acceleration*u_dt + currentState.g;
float position = velocity*u_dt + currentState.r;
results[layer] = vec4(position,velocity,acceleration,1);
}
ourOutput[0] = results[0];
ourOutput[1] = results[1];
ourOutput[2] = results[2];
ourOutput[3] = results[3];
最后要做的是我们需要调用gl.drawBuffers
来告诉WebGL2将输出存储在哪里。由于我们一次要使用4层,所以我们会使用
gl.drawBuffers([
gl.COLOR_ATTACHMENT0,
gl.COLOR_ATTACHMENT1,
gl.COLOR_ATTACHMENT2,
gl.COLOR_ATTACHMENT3,
]);
framebuffers.forEach((fb, ndx) => {
gl.bindFramebuffer(gl.FRAMEBUFFER, fb);
gl.uniform1f(baseLayerTexCoordLocation, (ndx * layersPerFramebuffer + 0.5) / numLayers);
....
gl.drawXXX(...);
});
示例:
function main() {
const gl = document.querySelector('canvas').getContext('webgl2');
if (!gl) {
return alert('need webgl2');
}
const ext = gl.getExtension('EXT_color_buffer_float');
if (!ext) {
return alert('need EXT_color_buffer_float');
}
const vs = `#version 300 es
in vec4 position;
out vec2 v_texCoord;
void main() {
gl_Position = position;
// position will be a quad -1 to +1 so we
// can use that for our texcoords
v_texCoord = position.xy * 0.5 + 0.5;
}
`;
const fs = `#version 300 es
precision highp float;
in vec2 v_texCoord;
uniform float baseLayerTexCoord;
uniform highp sampler3D u_image;
uniform mat3 u_kernel[3];
out vec4 ourOutput[4];
void main() {
vec3 textureSize = vec3(textureSize(u_image, 0));
vec3 onePixel = vec3(1.0, 1.0, 1.0)/textureSize;
const int numLayers = 4;
vec4 results[4];
for (int layer = 0; layer < numLayers; ++layer) {
vec3 baseTexCoord = vec3(v_texCoord, baseLayerTexCoord + onePixel * float(layer));
float fTotal = 0.0;
vec4 color;
for (int i=-1; i<=1; i++){
for (int j=-1; j<=1; j++){
for (int k=-1; k<=1; k++){
vec3 neighborCoord = baseTexCoord + vec3(onePixel.x*float(i), onePixel.y*float(j), onePixel.z*float(k));
color += u_kernel[k + 1][j + 1][i + 1] * texture(u_image, neighborCoord);
}
}
}
results[layer] = color;
}
ourOutput[0] = results[0];
ourOutput[1] = results[1];
ourOutput[2] = results[2];
ourOutput[3] = results[3];
}
`;
const vs2 = `#version 300 es
uniform vec4 position;
uniform float size;
void main() {
gl_Position = position;
gl_PointSize = size;
}
`;
const fs2 = `#version 300 es
precision highp float;
uniform highp sampler3D u_image;
uniform float slice;
out vec4 outColor;
void main() {
outColor = texture(u_image, vec3(gl_PointCoord.xy, slice));
}
`;
const computeProgramInfo = twgl.createProgramInfo(gl, [vs, fs]);
const drawProgramInfo = twgl.createProgramInfo(gl, [vs2, fs2]);
const bufferInfo = twgl.createBufferInfoFromArrays(gl, {
position: {
numComponents: 2,
data: [
-1, -1,
1, -1,
-1, 1,
-1, 1,
1, -1,
1, 1,
],
},
});
function create3DTexture(gl, size) {
const tex = gl.createTexture();
const data = new Float32Array(size * size * size * 4);
for (let i = 0; i < data.length; i += 4) {
data[i + 0] = i % 100 / 100;
data[i + 1] = i % 10000 / 10000;
data[i + 2] = i % 100000 / 100000;
data[i + 3] = 1;
}
gl.bindTexture(gl.TEXTURE_3D, tex);
gl.texImage3D(gl.TEXTURE_3D, 0, gl.RGBA32F, size, size, size, 0, gl.RGBA, gl.FLOAT, data);
gl.texParameteri(gl.TEXTURE_3D, gl.TEXTURE_MIN_FILTER, gl.NEAREST);
gl.texParameteri(gl.TEXTURE_3D, gl.TEXTURE_MAG_FILTER, gl.NEAREST);
return tex;
}
const size = 100;
let inTex = create3DTexture(gl, size);
let outTex = create3DTexture(gl, size);
const numLayers = size;
const layersPerFramebuffer = 4;
function makeFramebufferSet(gl, tex) {
const framebuffers = [];
for (let baseLayer = 0; baseLayer < numLayers; baseLayer += layersPerFramebuffer) {
const fb = gl.createFramebuffer();
gl.bindFramebuffer(gl.FRAMEBUFFER, fb);
for (let layer = 0; layer < layersPerFramebuffer; ++layer) {
gl.framebufferTextureLayer(gl.FRAMEBUFFER, gl.COLOR_ATTACHMENT0 + layer, tex, 0, baseLayer + layer);
}
framebuffers.push(fb);
}
return framebuffers;
};
let inFramebuffers = makeFramebufferSet(gl, inTex);
let outFramebuffers = makeFramebufferSet(gl, outTex);
function render() {
gl.viewport(0, 0, size, size);
gl.useProgram(computeProgramInfo.program);
twgl.setBuffersAndAttributes(gl, computeProgramInfo, bufferInfo);
outFramebuffers.forEach((fb, ndx) => {
gl.bindFramebuffer(gl.FRAMEBUFFER, fb);
gl.drawBuffers([
gl.COLOR_ATTACHMENT0,
gl.COLOR_ATTACHMENT1,
gl.COLOR_ATTACHMENT2,
gl.COLOR_ATTACHMENT3,
]);
const baseLayerTexCoord = (ndx * layersPerFramebuffer + 0.5) / numLayers;
twgl.setUniforms(computeProgramInfo, {
baseLayerTexCoord,
u_kernel: [
0, 0, 0,
0, 0, 0,
0, 0, 0,
0, 0, 1,
0, 0, 0,
0, 0, 0,
0, 0, 0,
0, 0, 0,
0, 0, 0,
],
u_image: inTex,
});
gl.drawArrays(gl.TRIANGLES, 0, 6);
});
{
const t = inFramebuffers;
inFramebuffers = outFramebuffers;
outFramebuffers = t;
}
{
const t = inTex;
inTex = outTex;
outTex = t;
}
gl.bindFramebuffer(gl.FRAMEBUFFER, null);
gl.drawBuffers([gl.BACK]);
gl.viewport(0, 0, gl.canvas.width, gl.canvas.height);
gl.useProgram(drawProgramInfo.program);
const slices = 10.0;
const sliceSize = 25.0
for (let slice = 0; slice < slices; ++slice) {
const sliceZTexCoord = (slice / slices * size + 0.5) / size;
twgl.setUniforms(drawProgramInfo, {
position: [
((slice * (sliceSize + 1) + sliceSize * .5) / gl.canvas.width * 2) - 1,
0,
0,
1,
],
slice: sliceZTexCoord,
size: sliceSize,
});
gl.drawArrays(gl.POINTS, 0, 1);
}
requestAnimationFrame(render);
}
requestAnimationFrame(render);
}
main();
function glEnumToString(gl, v) {
const hits = [];
for (const key in gl) {
if (gl[key] === v) {
hits.push(key);
}
}
return hits.length ? hits.join(' | ') : `0x${v.toString(16)}`;
}
<script src="https://twgljs.org/dist/4.x/twgl-full.min.js"></script>
<canvas></canvas>
其他一些注意事项:在GLSL ES 3.00中,您无需传递纹理大小,因为可以使用函数textureSize
查询纹理大小。它会根据纹理的类型返回ivec2
或ivec3
。
您也可以使用texelFetch
代替texture
。 texelFetch
采用整数texel坐标和mip级别,因此例如vec4 color = texelFetch(some3DTexture, ivec3(12, 23, 45), 0);
从mip级别0获得x = 12,y = 23,z = 45的纹理像素。这意味着您不需要如果发现使用像素而不是标准化的纹理坐标更容易,请对代码中的“ onePixel”进行数学计算。