我已经为卷积编写了代码,但是没有给出正确的输出。
代码:
def convolve(img , kernel):
(ih , iw) = img.shape[:2]
(kh , kw) = kernel.shape[:2]
pad = (kw - 1) // 2
img = cv2.copyMakeBorder(img , pad , pad , pad , pad , cv2.BORDER_REPLICATE)
out = np.zeros((ih , iw) , dtype = "float32")
for y in np.arange(pad , ih + pad):
for x in np.arange(pad , iw + pad):
roi = img[y - pad: y + pad + 1 , x - pad : x + pad + 1]
res = (roi * kernel).sum()
out[y - pad, x - pad] = res
out = rescale_intensity(out, in_range=(0, 255))
out = (out * 255).astype("uint8")
return out
我将此函数称为:
smallblur_kernel = np.ones((3 , 3) , dtype = "float") * (1.0 / (3 * 3))
ans = convolve(gray , smallblur_kernel)
我希望它会产生模糊的图像。
答案 0 :(得分:3)
您的问题是它的标识不正确...。因此它仅处理一个像素并返回...正确的代码应为:
import numpy as np
import cv2
from skimage import exposure
def convolve(img , kernel):
(ih , iw) = img.shape[:2]
(kh , kw) = kernel.shape[:2]
pad = (kw - 1) // 2
img = cv2.copyMakeBorder(img , pad , pad , pad , pad , cv2.BORDER_REPLICATE)
out = np.zeros((ih , iw) , dtype = "float32")
for y in np.arange(pad , ih + pad):
for x in np.arange(pad , iw + pad):
roi = img[y - pad: y + pad + 1 , x - pad : x + pad + 1]
res = (roi * kernel).sum()
out[y - pad, x - pad] = res
##### This lines were not indented correctly #####
out = exposure.rescale_intensity(out, in_range=(0, 255))
out = (out*255 ).astype(np.uint8)
##################################################
return out
smallblur_kernel = np.ones((3 , 3) , dtype = "float") * (1.0 / (3 * 3))
gray = cv2.imread("D:\\debug\\lena.png", 0)
ans = convolve(gray , smallblur_kernel)
cv2.imshow("a", ans)
cv2.waitKey(0)
cv2.destroyAllWindows()
但是此功能非常慢,您应该使用OpenCV中的filter2d函数来优化卷积。