确定两个点是否最接近的最快方法

时间:2019-04-22 20:09:53

标签: python-3.x distance numpy-ndarray numpy-einsum

我的问题包括以下几个方面:我得到了两个成对的角度(在球坐标系中),它们由两部分组成-方位角和后倾角。如果我们无限延长两个角度(从而增加它们各自的半径)以使长线指向该对角度所给定的方向,那么我的目标是确定

  1. 如果它们相交或彼此非常接近,并且
  2. 它们相交的地方。

当前,我已经尝试了几种方法:

  1. 最明显的一个是迭代比较每个半径,直到两者之间存在匹配或足够小的距离为止。 (当我说比较每个半径时,我指的是将每个球坐标转换为笛卡尔坐标,然后找到两者之间的欧式距离)。但是,此运行时为$ O(n ^ {2})$,如果我尝试扩展该程序,这将非常慢

  2. 第二种最明显的方法是使用优化程序包查找该距离。不幸的是,我无法迭代优化程序包,并且在一个实例之后,优化算法会重复相同的答案,这是没有用的。

  3. 最不明显的方法是直接从角度计算(使用演算)确切的半径。尽管这是快速的方法,但它不是非常准确。

注意:尽管交集始终位于零起点(0,0,0)似乎很简单,但情况并非总是如此。有些点永远不会相交。

方法(1)的代码

def match1(azimuth_recon_1,colatitude_recon_1,azimuth_recon_2, colatitude_recon_2,centroid_1,centroid_2 ):


   # Constants: tolerance factor and extremely large distance
    tol = 3e-2
    prevDist = 99999999

    # Initialize a list of radii to loop through
    # Checking iteravely for a solution
    for r1 in list(np.arange(0,5,tol)):
        for r2 in list(np.arange(0,5,tol)):

            # Get the estimates
            estimate_1 = np.array(spher2cart(r1,azimuth_recon_1,colatitude_recon_1)) + np.array(centroid_1)
            estimate_2 = np.array(spher2cart(r2,azimuth_recon_2,colatitude_recon_2))+ np.array(centroid_2)

            # Calculate the euclidean distance between them
            dist = np.array(np.sqrt(np.einsum('i...,i...', (estimate_1 - estimate_2), (estimate_1 - estimate_2)))[:,np.newaxis])

        # Compare the distance to this tolerance
            if dist < tol: 
                if dist == 0:
                    return estimate_1, [], True
                else:
                    return estimate_1, estimate_2, False

            ## If the distance is too big break out of the loop
            if dist > prevDist:
                prevDist = 9999999
                break
            prevDist = dist

    return [], [], False

方法(3)的代码

def match2(azimuth_recon_1,colatitude_recon_1,azimuth_recon_2, colatitude_recon_2,centriod_1,centroid_2):

   # Set a Tolerance factor
    tol = 3e-2

    def calculate_radius_2(azimuth_1,colatitude_1,azimuth_2,colatitude_2):

        """Return radius 2 using both pairs of angles (azimuth and colatitude). Equation is provided in the document"""

        return 1/((1-(math.sin(azimuth_1)*math.sin(azimuth_2)*math.cos(colatitude_1-colatitude_2))
        +math.cos(azimuth_1)*math.cos(azimuth_2))**2)

    def calculate_radius_1(radius_2,azimuth_1,colatitude_1,azimuth_2,colatitude_2):

        """Returns radius 1 using both pairs of angles (azimuth and colatitude) and radius 2. 
    Equation provided in document"""

        return (radius_2)*((math.sin(azimuth_1)*math.sin(azimuth_2)*math.cos(colatitude_1-colatitude_2))
        +math.cos(azimuth_1)*math.cos(azimuth_2))

    # Compute radius 2
    radius_2 = calculate_radius_2(azimuth_recon_1,colatitude_recon_1,azimuth_recon_2,colatitude_recon_2)

    #Compute radius 1
    radius_1 = calculate_radius_1(radius_2,azimuth_recon_1,colatitude_recon_1,azimuth_recon_2,colatitude_recon_2)

    # Get the estimates
    estimate_1 = np.array(spher2cart(radius_1,azimuth_recon_1,colatitude_recon_1))+ np.array(centroid_1)
    estimate_2 = np.array(spher2cart(radius_2,azimuth_recon_2,colatitude_recon_2))+ np.array(centroid_2) 

    # Calculate the euclidean distance between them
    dist = np.array(np.sqrt(np.einsum('i...,i...', (estimate_1 - estimate_2), (estimate_1 - estimate_2)))[:,np.newaxis])

    # Compare the distance to this tolerance
    if dist < tol: 
        if dist == 0:
            return estimate_1, [], True
        else:
            return estimate_1, estimate_2, False
    else:
        return [], [], False
  

我的问题有两个:

     
      
  1. 是否有更快,更准确的方法来找到两个半径   点?

  2.   
  3. 如果是,该怎么办?

  4.   

编辑:我正在考虑只创建两个半径的两个numpy数组,然后通过numpy布尔逻辑比较它们。但是,我仍然会迭代比较它们。有没有一种执行此比较的更快方法?

1 个答案:

答案 0 :(得分:1)

在这种情况下使用kd-tree。它将轻松查找最小距离:

def match(azimuth_recon_1,colatitude_recon_1,azimuth_recon_2, colatitude_recon_2,centriod_1,centroid_2):

    cartesian_1 = np.array([np.cos(azimuth_recon_1)*np.sin(colatitude_recon_1),np.sin(azimuth_recon_1)*np.sin(colatitude_recon_1),np.cos(colatitude_recon_1)]) #[np.newaxis,:]
    cartesian_2 = np.array([np.cos(azimuth_recon_2)*np.sin(colatitude_recon_2),np.sin(azimuth_recon_2)*np.sin(colatitude_recon_2),np.cos(colatitude_recon_2)]) #[np.newaxis,:]

    # Re-center them via adding the centroid
    estimate_1 = r1*cartesian_1.T + np.array(centroid_1)[np.newaxis,:] 
    estimate_2 = r2*cartesian_2.T + np.array(centroid_2)[np.newaxis,:]

    # Add them to the output list
    n = estimate_1.shape[0]
    outputs_list_1.append(estimate_1)
    outputs_list_2.append(estimate_2)

    # Reshape them so that they are in proper format
    a = np.array(outputs_list_1).reshape(len(two_pair_mic_list)*n,3)
    b = np.array(outputs_list_2).reshape(len(two_pair_mic_list)*n,3)

    # Get the difference
    c = a - b

    # Put into a KDtree
    tree = spatial.KDTree(c)

    # Find the indices where the radius (distance between the points) is 3e-3 or less 
    indices = tree.query_ball_tree(3e-3)

这将输出距离为3e-3或更小的索引列表。现在,您所要做的就是将索引列表与估计列表一起使用以找到确切的点。一切就绪,这将为您节省大量的时间和空间!