我正在尝试使用“金属”视图MTKView
在相机Feed上显示滤镜。我密切关注Apple的示例代码的方法-通过使用TrueDepth摄像机数据来增强实时视频(link)。
以下代码效果很好(主要从上述示例代码解释):
class MetalObject: NSObject, MTKViewDelegate {
private var metalBufferView : MTKView?
private var metalDevice = MTLCreateSystemDefaultDevice()
private var metalCommandQueue : MTLCommandQueue!
private var ciContext : CIContext!
private let colorSpace = CGColorSpaceCreateDeviceRGB()
private var videoPixelBuffer : CVPixelBuffer?
private let syncQueue = DispatchQueue(label: "Preview View Sync Queue", qos: .userInitiated, attributes: [], autoreleaseFrequency: .workItem)
private var textureWidth : Int = 0
private var textureHeight : Int = 0
private var textureMirroring = false
private var sampler : MTLSamplerState!
private var renderPipelineState : MTLRenderPipelineState!
private var vertexCoordBuffer : MTLBuffer!
private var textCoordBuffer : MTLBuffer!
private var internalBounds : CGRect!
private var textureTranform : CGAffineTransform?
private var previewImage : CIImage?
init(with frame: CGRect) {
super.init()
self.metalBufferView = MTKView(frame: frame, device: self.metalDevice)
self.metalBufferView!.contentScaleFactor = UIScreen.main.nativeScale
self.metalBufferView!.framebufferOnly = true
self.metalBufferView!.colorPixelFormat = .bgra8Unorm
self.metalBufferView!.isPaused = true
self.metalBufferView!.enableSetNeedsDisplay = false
self.metalBufferView!.delegate = self
self.metalCommandQueue = self.metalDevice!.makeCommandQueue()
self.ciContext = CIContext(mtlDevice: self.metalDevice!)
//Configure Metal
let defaultLibrary = self.metalDevice!.makeDefaultLibrary()!
let pipelineDescriptor = MTLRenderPipelineDescriptor()
pipelineDescriptor.colorAttachments[0].pixelFormat = .bgra8Unorm
pipelineDescriptor.vertexFunction = defaultLibrary.makeFunction(name: "vertexPassThrough")
pipelineDescriptor.fragmentFunction = defaultLibrary.makeFunction(name: "fragmentPassThrough")
// To determine how our textures are sampled, we create a sampler descriptor, which
// will be used to ask for a sampler state object from our device below.
let samplerDescriptor = MTLSamplerDescriptor()
samplerDescriptor.sAddressMode = .clampToEdge
samplerDescriptor.tAddressMode = .clampToEdge
samplerDescriptor.minFilter = .linear
samplerDescriptor.magFilter = .linear
sampler = self.metalDevice!.makeSamplerState(descriptor: samplerDescriptor)
do {
renderPipelineState = try self.metalDevice!.makeRenderPipelineState(descriptor: pipelineDescriptor)
} catch {
fatalError("Unable to create preview Metal view pipeline state. (\(error))")
}
}
final func update (newVideoPixelBuffer: CVPixelBuffer?) {
self.syncQueue.async {
var filteredImage : CIImage
self.videoPixelBuffer = newVideoPixelBuffer
//---------
//Core image filters
//Strictly CIFilters, chained together
//---------
self.previewImage = filteredImage
//Ask Metal View to draw
self.metalBufferView?.draw()
}
}
//MARK: - Metal View Delegate
final func draw(in view: MTKView) {
print (Thread.current)
guard let drawable = self.metalBufferView!.currentDrawable,
let currentRenderPassDescriptor = self.metalBufferView!.currentRenderPassDescriptor,
let previewImage = self.previewImage else {
return
}
// create a texture for the CI image to render to
let textureDescriptor = MTLTextureDescriptor.texture2DDescriptor(
pixelFormat: .bgra8Unorm,
width: Int(previewImage.extent.width),
height: Int(previewImage.extent.height),
mipmapped: false)
textureDescriptor.usage = [.shaderWrite, .shaderRead]
let texture = self.metalDevice!.makeTexture(descriptor: textureDescriptor)!
if texture.width != textureWidth ||
texture.height != textureHeight ||
self.metalBufferView!.bounds != internalBounds {
setupTransform(width: texture.width, height: texture.height, mirroring: mirroring, rotation: rotation)
}
// Set up command buffer and encoder
guard let commandQueue = self.metalCommandQueue else {
print("Failed to create Metal command queue")
return
}
guard let commandBuffer = commandQueue.makeCommandBuffer() else {
print("Failed to create Metal command buffer")
return
}
// add rendering of the image to the command buffer
ciContext.render(previewImage,
to: texture,
commandBuffer: commandBuffer,
bounds: previewImage.extent,
colorSpace: self.colorSpace)
guard let commandEncoder = commandBuffer.makeRenderCommandEncoder(descriptor: currentRenderPassDescriptor) else {
print("Failed to create Metal command encoder")
return
}
// add vertex and fragment shaders to the command buffer
commandEncoder.label = "Preview display"
commandEncoder.setRenderPipelineState(renderPipelineState!)
commandEncoder.setVertexBuffer(vertexCoordBuffer, offset: 0, index: 0)
commandEncoder.setVertexBuffer(textCoordBuffer, offset: 0, index: 1)
commandEncoder.setFragmentTexture(texture, index: 0)
commandEncoder.setFragmentSamplerState(sampler, index: 0)
commandEncoder.drawPrimitives(type: .triangleStrip, vertexStart: 0, vertexCount: 4)
commandEncoder.endEncoding()
commandBuffer.present(drawable) // Draw to the screen
commandBuffer.commit()
}
final func mtkView(_ view: MTKView, drawableSizeWillChange size: CGSize) {
}
}
注释
MTKViewDelegate
代替子类MTKView
的原因是,当子类化时,在主线程上调用了draw调用。使用上面显示的委托方法,似乎每个循环都调用了与金属不同的线程。上面的方法似乎可以提供更好的性能。CIFilter
用法的更新方法的详细信息必须删除。所有这些都是CIFilters
堆积的重链。不幸的是,这些过滤器没有任何调整的余地。上面的代码似乎会大大减慢主线程的速度,从而导致应用程序UI的其余部分变得不稳定。例如,滚动UIScrollview
似乎慢而断断续续。
调整Metal视图可简化CPU的工作,并在主线程上轻松进行操作,以为其余的UI留下足够的汁液。
根据以上图形,命令缓冲区的准备工作全部在CPU中完成,直到出现并提交(?)为止。有没有办法从CPU上卸载它?
感谢任何可以提高绘图效率的提示,反馈,技巧等。
答案 0 :(得分:4)
您可以采取一些措施来提高性能:
CIRenderDestination
API将实际的纹理检索延迟到实际渲染视图的那一刻(即完成Core Image后)。这是我在Core Image项目中使用的draw(in view: MTKView)
,针对您的情况进行了修改:
public func draw(in view: MTKView) {
if let currentDrawable = view.currentDrawable,
let commandBuffer = self.commandQueue.makeCommandBuffer() {
let drawableSize = view.drawableSize
// optional: scale the image to fit the view
let scaleX = drawableSize.width / image.extent.width
let scaleY = drawableSize.height / image.extent.height
let scale = min(scaleX, scaleY)
let scaledImage = previewImage.transformed(by: CGAffineTransform(scaleX: scale, y: scale))
// optional: center in the view
let originX = max(drawableSize.width - scaledImage.extent.size.width, 0) / 2
let originY = max(drawableSize.height - scaledImage.extent.size.height, 0) / 2
let centeredImage = scaledImage.transformed(by: CGAffineTransform(translationX: originX, y: originY))
// create a render destination that allows to lazily fetch the target texture
// which allows the encoder to process all CI commands _before_ the texture is actually available;
// this gives a nice speed boost because the CPU doesn’t need to wait for the GPU to finish
// before starting to encode the next frame
let destination = CIRenderDestination(width: Int(drawableSize.width),
height: Int(drawableSize.height),
pixelFormat: view.colorPixelFormat,
commandBuffer: commandBuffer,
mtlTextureProvider: { () -> MTLTexture in
return currentDrawable.texture
})
let task = try! self.context.startTask(toRender: centeredImage, to: destination)
// bonus: you can Quick Look the task to see what’s actually scheduled for the GPU
commandBuffer.present(currentDrawable)
commandBuffer.commit()
// optional: you can wait for the task execution and Quick Look the info object to get insights and metrics
DispatchQueue.global(qos: .background).async {
let info = try! task.waitUntilCompleted()
}
}
}
如果这仍然太慢,则可以在创建priorityRequestLow
时尝试设置CIContextOption
CIContext
,以告知Core Image低优先级渲染。