我试图在张量板上可视化训练,正在使用keras进行拟合
print('replaying for agent:{}'.format(self.agent_name))
minibatch = random.sample(list(self.memory), self.batch_size)
for state, action, reward, next_state in minibatch:
# print "Reward: {}".format(type(reward))
target = reward + self.gamma * np.max(self.regressor.predict(next_state)[0])
target_f = self.regressor.predict(state)
# print target_f
# print target
target_f[0][action] = target
self.regressor.fit(state, target_f, epochs=1, verbose=0,callbacks=[self.tensorboard]) #,
if self.exploration > self.min_exploration:
self.exploration *= self.exploration_decay
print('replaying for agent:{} done.'.format(self.agent_name))
但是当我删除callbacks
时,该过程运行得更快,如何正确配置回调?