如何在Keras 2.1.0中修复输出形状

时间:2019-04-18 00:30:31

标签: tensorflow keras

使用Keras版本2.1.0时,出现密集层形状错误。仅此版本的Keras(2.1.0)会发生此问题。由于该版本位于群集中,因此我无法升级该版本,因此我暂时尝试查找修复程序。我的模型定义如下。

model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 3),
                 activation='relu',
                 input_shape=(32, 32, 3)))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(10, activation='softmax'))

model.compile(loss='categorical_crossentropy',
              optimizer=config["optimizer"],
              metrics=['accuracy'])

我已经完成了一种热编码,如下所示。

y_train = keras.utils.to_categorical(y_train, 10)
y_test = keras.utils.to_categorical(y_test, 10)

模型摘要是

_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
conv2d_1 (Conv2D)            (None, 30, 30, 32)        896       
_________________________________________________________________
conv2d_2 (Conv2D)            (None, 28, 28, 64)        18496     
_________________________________________________________________
max_pooling2d_1 (MaxPooling2 (None, 14, 14, 64)        0         
_________________________________________________________________
dropout_1 (Dropout)          (None, 14, 14, 64)        0         
_________________________________________________________________
flatten_1 (Flatten)          (None, 12544)             0         
_________________________________________________________________
dense_1 (Dense)              (None, 128)               1605760   
_________________________________________________________________
dropout_2 (Dropout)          (None, 128)               0         
_________________________________________________________________
dense_2 (Dense)              (None, 10)                1290      
=================================================================
Total params: 1,626,442
Trainable params: 1,626,442
Non-trainable params: 0
_____________________________________

我得到的错误是:

  

ValueError:检查目标时出错:预期density_2具有2   尺寸,但数组的形状为(50000,1,10)

完全相同的代码可在Keras 2.2.4中完美地工作

0 个答案:

没有答案