click here for the output我尝试了下面的代码,以进行插入式训练控制集,然后制作了一个rpart训练集连同下面使用的函数,然后我尝试使用prp函数绘制rpart图,然后仅形成一片叶子,而我得到的输出位于第一行上方的图像链接中。
[>
structure(list(source = structure(c(7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L), .Label = c("IN", "MA", "NR",
"OT", "PA", "P", "R",
"S", "U", "Z"), class = "factor"),age = structure(c(2L, 1L, 1L,
2L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L), .Label = c("L17",
"U17"), class = "factor"),, name = structure(c(3L, 2L, 2L,
1L, 2L, 3L, 1L, 1L, 2L, 2L), .Label = c("f", "l", "s",
"v", "z"), class = "factor"), success = structure(c(1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L), .Label = c("0", "1"), class = "factor"),
day = structure(c(6L, 6L, 7L, 7L, 5L, 5L, 1L, 1L, 1L, 1L), .Label = c("Friday",
"Monday", "Saturday", "Sunday", "Thursday", "Tuesday", "Wednesday"
), class = "factor"), country = structure(c(6L, 2L, 4L, 2L,
2L, 4L, 1L, 2L, 7L, 2L), .Label = c("A", "C",
"I", "Other", "S", "Ua", "U"
), class = "factor")), row.names = c(NA, -10L), class = c("data.table",
"data.frame"), .internal.selfref = <pointer: 0x0000000000101ef0>)
k<-ow
> str(k)
Classes ‘tbl_df’, ‘tbl’ and 'data.frame': 1898 obs. of 6 variables:
$ source : Factor w/ 10 levels "I",..: 7 7 7 7 7 7 7 7 7 7 ...
$ age : Factor w/ 2 levels "L17","U17": 2 1 1 2 1 1 2 1 1 1 ...
$ name : Factor w/ 5 levels "f","l",..: 3 2 2 1 2 3 1 1 2 2 ...
$ success: Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
$ day : Factor w/ 7 levels "Fri","Monday",..: 6 6 7 7 5 5 1 1 1 1 ...
$ country: Factor w/ 7 levels "A","C",..: 6 2 4 2 2 4 1 2 7 2 ...
- attr(*, ".internal.selfref")=<externalptr>
> k.label<-k$success
> set.seed(37569)
> cv.3.folds<-createMultiFolds(k.label,k=3,times=10)
> ctrl.3<-trainControl(method = "repeatedcv",number = 3,repeats = 10,index=cv.3.folds)
>k.train.1<-k[,c("age","source","day")]
#i tried using rpat.oc function which is given down
> k.cv<-rpart.oc(94622,k.train.1,k.label,ctrl.3)
Warning messages:
1: In .Internal(gc(verbose, reset, full)) :
closing unused connection 8 (<-activate.adobe.com:11086)
2: In .Internal(gc(verbose, reset, full)) :
closing unused connection 7 (<-activate.adobe.com:11086)
3: In .Internal(gc(verbose, reset, full)) :
closing unused connection 6 (<-activate.adobe.com:11086)
4: In .Internal(gc(verbose, reset, full)) :
closing unused connection 5 (<-activate.adobe.com:11086)
5: In .Internal(gc(verbose, reset, full)) :
closing unused connection 4 (<-activate.adobe.com:11086)
6: In .Internal(gc(verbose, reset, full)) :
closing unused connection 3 (<-activate.adobe.com:11086)
7: Setting row names on a tibble is deprecated.
> prp(k.cv$finalModel,type=0,extra=1,under=TRUE)
> View(rpart.oc)
function(seed,training,labels,otrl){
ol<-makeSOCKcluster(6,type="SOCK")
registerDoSNOW(ol)
set.seed(seed)
rpart.oc<-train(x=training,y=labels,method="rpart",tuneLength=30,trControl=otrl)
stopCluster(ol)
return(rpart.oc)
}
答案 0 :(得分:0)
有时候,CART流程找不到比仅拦截模型更好的预测拆分(例如,回归的样本均值或分类的模式)。基本上,这意味着您没有CART程序的有用信息。
例如:
library(rpart)
dat <- data.frame(y = 1:10, x = rep(1:2, 5))
rpart(y ~ x, data = dat)
#> n= 10
#>
#> node), split, n, deviance, yval
#> * denotes terminal node
#>
#> 1) root 10 82.5 5.5 *
由reprex package(v0.2.1)于2019-04-20创建
答案 1 :(得分:0)
我遇到了同样的问题。 Here is a link 我提出的问题并得到了答复。希望这会有所帮助。