在rpart图中仅形成一片叶子

时间:2019-04-17 19:42:42

标签: r r-caret rpart

click here for the output我尝试了下面的代码,以进行插入式训练控制集,然后制作了一个rpart训练集连同下面使用的函数,然后我尝试使用prp函数绘制rpart图,然后仅形成一片叶子,而我得到的输出位于第一行上方的图像链接中。

 [> 





     structure(list(source = structure(c(7L, 7L, 7L, 7L, 7L, 7L, 7L, 


                    7L, 7L, 7L), .Label = c("IN", "MA", "NR", 
                        "OT", "PA", "P", "R", 
                        "S", "U", "Z"), class = "factor"),age = structure(c(2L, 1L, 1L, 
2L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L), .Label = c("L17", 
"U17"), class = "factor"),, name = structure(c(3L, 2L, 2L, 
                        1L, 2L, 3L, 1L, 1L, 2L, 2L), .Label = c("f", "l", "s", 
                        "v", "z"), class = "factor"), success = structure(c(1L, 
                        1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L), .Label = c("0", "1"), class = "factor"), 
                            day = structure(c(6L, 6L, 7L, 7L, 5L, 5L, 1L, 1L, 1L, 1L), .Label = c("Friday", 
                            "Monday", "Saturday", "Sunday", "Thursday", "Tuesday", "Wednesday"
                            ), class = "factor"), country = structure(c(6L, 2L, 4L, 2L, 
                            2L, 4L, 1L, 2L, 7L, 2L), .Label = c("A", "C", 
                            "I", "Other", "S", "Ua", "U"
                            ), class = "factor")), row.names = c(NA, -10L), class = c("data.table", 
                        "data.frame"), .internal.selfref = <pointer: 0x0000000000101ef0>)





                   k<-ow
                            > str(k)
                           Classes ‘tbl_df’, ‘tbl’ and 'data.frame':    1898 obs. of  6 variables:
     $ source : Factor w/ 10 levels "I",..: 7 7 7 7 7 7 7 7 7 7 ...
     $ age    : Factor w/ 2 levels "L17","U17": 2 1 1 2 1 1 2 1 1 1 ...
     $ name   : Factor w/ 5 levels "f","l",..: 3 2 2 1 2 3 1 1 2 2 ...
     $ success: Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
     $ day    : Factor w/ 7 levels "Fri","Monday",..: 6 6 7 7 5 5 1 1 1 1 ...
     $ country: Factor w/ 7 levels "A","C",..: 6 2 4 2 2 4 1 2 7 2 ...
                             - attr(*, ".internal.selfref")=<externalptr> 
                            > k.label<-k$success
                            > set.seed(37569)
                            > cv.3.folds<-createMultiFolds(k.label,k=3,times=10)
                            > ctrl.3<-trainControl(method = "repeatedcv",number = 3,repeats = 10,index=cv.3.folds)
                            >k.train.1<-k[,c("age","source","day")]
                            #i tried using rpat.oc function which is given down
                            > k.cv<-rpart.oc(94622,k.train.1,k.label,ctrl.3)
                           Warning messages:
        1: In .Internal(gc(verbose, reset, full)) :
          closing unused connection 8 (<-activate.adobe.com:11086)
        2: In .Internal(gc(verbose, reset, full)) :
          closing unused connection 7 (<-activate.adobe.com:11086)
        3: In .Internal(gc(verbose, reset, full)) :
          closing unused connection 6 (<-activate.adobe.com:11086)
        4: In .Internal(gc(verbose, reset, full)) :
          closing unused connection 5 (<-activate.adobe.com:11086)
        5: In .Internal(gc(verbose, reset, full)) :
          closing unused connection 4 (<-activate.adobe.com:11086)
        6: In .Internal(gc(verbose, reset, full)) :
          closing unused connection 3 (<-activate.adobe.com:11086)
        7: Setting row names on a tibble is deprecated.  

                           > prp(k.cv$finalModel,type=0,extra=1,under=TRUE)



                            > View(rpart.oc)
                            function(seed,training,labels,otrl){
                            ol<-makeSOCKcluster(6,type="SOCK")
                            registerDoSNOW(ol)
                            set.seed(seed)
                            rpart.oc<-train(x=training,y=labels,method="rpart",tuneLength=30,trControl=otrl)
                            stopCluster(ol)
                            return(rpart.oc)
                            }

2 个答案:

答案 0 :(得分:0)

有时候,CART流程找不到比仅拦截模型更好的预测拆分(例如,回归的样本均值或分类的模式)。基本上,这意味着您没有CART程序的有用信息。

例如:

library(rpart)

dat <- data.frame(y = 1:10, x = rep(1:2, 5))
rpart(y ~ x, data = dat)
#> n= 10 
#> 
#> node), split, n, deviance, yval
#>       * denotes terminal node
#> 
#> 1) root 10 82.5 5.5 *

reprex package(v0.2.1)于2019-04-20创建

答案 1 :(得分:0)

我遇到了同样的问题。 Here is a link 我提出的问题并得到了答复。希望这会有所帮助。