编写一个Keras层,实际上只是输出一个可训练的参数

时间:2019-04-16 17:57:15

标签: python tensorflow keras keras-layer

我试图写一个基本上只是一个普通前馈层的层(激活(W x + b))。唯一的新颖之处在于,我希望该层包含一维参数矢量(输出尺寸的大小),并在调用时仅输出该一维矢量,而不是实际计算激活值(W x + b )。该向量应该是可训练的。

这是我想出的代码:

from keras import backend as K
from keras.layers import Layer
import keras

class MyLayer(Layer):

    def __init__(self, output_dim, **kwargs):
        self.output_dim = output_dim
        super(MyLayer, self).__init__(**kwargs)

    def build(self, input_shape):
        # Create a trainable weight variable for this layer.
        self.kernel = self.add_weight(name='kernel', 
                                      shape=(input_shape[1], self.output_dim),
                                      initializer='uniform',
                                      trainable=True)
        self.out_estimate = self.add_weight(name='out_estimate',
                                              shape=(self.output_dim,),
                                              initializer='uniform',
                                              trainable=True)
        super(MyLayer, self).build(input_shape)  # Be sure to call this at the end

    def call(self, x):
        return self.out_estimate

    def compute_output_shape(self, input_shape):
        return (self.output_dim,)
from keras.models import  Model
from keras import layers
from keras import Input

input_tensor = layers.Input(shape=(784,))
output_tensor = MyLayer(10)(input_tensor)

model = Model(input_tensor, output_tensor)
model.summary()
model.compile(optimizer='rmsprop', loss='categorical_crossentropy')
model.fit(train_images, train_labels, epochs=1, batch_size=128)

以下是输出:

ValueError:检查目标时出错:预期my_layer_69具有1个维度,但数组的形状为(60000,10)

1 个答案:

答案 0 :(得分:0)

MyLayer类让__init__寻找维度。但是您正在发送tesnor。将tesnor维度提取到self.output_dim