我正在训练COCO预先训练的mobilenetSSDv2模型,并仅在背包上对其进行进一步训练。训练后,随着各种管道配置的变化(学习率,num_steps等),我在对象本地化方面的损失不断减少(在背包周围画一个边界框),但是在分类方面的损失却增加了(通常将其检测为“手提箱”,“滑板” ”或其他一些非“背包”类)。
我已经试验了这些超级参数,并确保我的训练,验证和测试数据都是正确的。可能是此问题的一些潜在原因?
尝试了变化的超参数。检查数据文件是否正确。
用于培训的代码如下所示:
rm -rf /NAME/model_dir_for_training_ssdv2
mkdir /NAME/model_dir_for_training_ssdv2
cd /NAME/tensorflow/models/research
export PYTHONPATH=/NAME/tensorflow/models/research:/tensorflow/models/research/slim && \
PIPELINE_CONFIG_PATH=/NAME/ssd_mobilenet_v2_coco_2018_03_29/pipeline.config && \
NUM_TRAIN_STEPS=5000 && \
MODEL_DIR=/NAME/model_dir_for_training_ssdv2 && \
SAMPLE_1_OF_N_EVAL_EXAMPLES=1
python object_detection/model_main.py \
--pipeline_config_path=${PIPELINE_CONFIG_PATH} \
--model_dir=${MODEL_DIR} \
--num_train_steps=${NUM_TRAIN_STEPS} \
--sample_1_of_n_eval_examples=${SAMPLE_1_OF_N_EVAL_EXAMPLES} \
--alsologtostderr
管道配置文件如下所示:
model {
ssd {
num_classes: 90
image_resizer {
fixed_shape_resizer {
height: 300
width: 300
}
}
feature_extractor {
type: "ssd_mobilenet_v2"
depth_multiplier: 1.0
min_depth: 16
conv_hyperparams {
regularizer {
l2_regularizer {
weight: 3.99999989895e-05
}
}
initializer {
truncated_normal_initializer {
mean: 0.0
stddev: 0.0299999993294
}
}
activation: RELU_6
batch_norm {
decay: 0.999700009823
center: true
scale: true
epsilon: 0.0010000000475
train: true
}
}
use_depthwise: true
}
box_coder {
faster_rcnn_box_coder {
y_scale: 10.0
x_scale: 10.0
height_scale: 5.0
width_scale: 5.0
}
}
matcher {
argmax_matcher {
matched_threshold: 0.5
unmatched_threshold: 0.5
ignore_thresholds: false
negatives_lower_than_unmatched: true
force_match_for_each_row: true
}
}
similarity_calculator {
iou_similarity {
}
}
box_predictor {
convolutional_box_predictor {
conv_hyperparams {
regularizer {
l2_regularizer {
weight: 3.99999989895e-05
}
}
initializer {
truncated_normal_initializer {
mean: 0.0
stddev: 0.0299999993294
}
}
activation: RELU_6
batch_norm {
decay: 0.999700009823
center: true
scale: true
epsilon: 0.0010000000475
train: true
}
}
min_depth: 0
max_depth: 0
num_layers_before_predictor: 0
use_dropout: false
dropout_keep_probability: 0.95
kernel_size: 3
box_code_size: 4
apply_sigmoid_to_scores: false
}
}
anchor_generator {
ssd_anchor_generator {
num_layers: 6
min_scale: 0.20000000298
max_scale: 0.949999988079
aspect_ratios: 1.0
aspect_ratios: 2.0
aspect_ratios: 0.5
aspect_ratios: 3.0
aspect_ratios: 0.333299994469
}
}
post_processing {
batch_non_max_suppression {
score_threshold: 0.300000011921
iou_threshold: 0.600000023842
max_detections_per_class: 100
max_total_detections: 10000
}
score_converter: SIGMOID
}
normalize_loss_by_num_matches: true
loss {
localization_loss {
weighted_smooth_l1 {
}
}
classification_loss {
weighted_sigmoid {
}
}
hard_example_miner {
num_hard_examples: 3000
iou_threshold: 0.990000009537
loss_type: CLASSIFICATION
max_negatives_per_positive: 3
min_negatives_per_image: 3
}
classification_weight: 1.0
localization_weight: 1.0
}
}
}
train_config {
batch_size: 50
data_augmentation_options {
random_horizontal_flip {
}
}
data_augmentation_options {
ssd_random_crop {
}
}
optimizer {
rms_prop_optimizer {
learning_rate {
exponential_decay_learning_rate {
initial_learning_rate: 0.0000000400000018999
decay_steps: 800720
decay_factor: 0.949999988079
}
}
momentum_optimizer_value: 0.899999976158
decay: 0.899999976158
epsilon: 1.0
}
}
fine_tune_checkpoint: "/Name/ssd_mobilenet_v2_coco_2018_03_29/model.ckpt"
from_detection_checkpoint: true
load_all_detection_checkpoint_vars: true
fine_tune_checkpoint_type: "detection"
}
train_input_reader {
label_map_path: "/Name/ssd_mobilenet_v2_coco_2018_03_29/label_map.pbtxt"
tf_record_input_reader {
input_path: "/Name/OIDv4_ToolKit/OID/Dataset/annotations/tfrecords/coco_train.record-00000-of-00100"
}
}
eval_config {
num_examples: 22
max_evals: 10
use_moving_averages: false
num_visualizations: 20
}
eval_input_reader {
label_map_path: "/Name/ssd_mobilenet_v2_coco_2018_03_29/label_map.pbtxt"
shuffle: false
num_readers: 1
tf_record_input_reader {
input_path: "/Name/OIDv4_ToolKit/OID/Dataset/annotations/tfrecords/coco_val.record-00000-of-00010"
}
}
通过训练更多新颖的数据,可以预期所有类型的损失都会减少。