我正在尝试重新训练张量流对象检测模型-更快的r cnn(在iNaturalist上预训练)数据。但是,经过约6万步的训练(总损失稳定后),如果我进行评估,则我的检测结果的置信度得分太低,约为e-5。
原始模型大约有2k个类。我正在训练4个班级-几乎相等的分布,有900个样本。数据扩充选项为“ random_horizontal_flip”。
我应该增加样本数量吗?也许有更多的增强选项?
任何帮助将不胜感激!谢谢!
编辑: 所使用的配置文件
model {
faster_rcnn {
num_classes: 4
image_resizer {
keep_aspect_ratio_resizer {
min_dimension: 600
max_dimension: 1024
}
}
feature_extractor {
type: "faster_rcnn_resnet50"
first_stage_features_stride: 16
}
first_stage_anchor_generator {
grid_anchor_generator {
height_stride: 16
width_stride: 16
scales: 0.25
scales: 0.5
scales: 1.0
scales: 2.0
aspect_ratios: 0.5
aspect_ratios: 1.0
aspect_ratios: 2.0
}
}
first_stage_box_predictor_conv_hyperparams {
op: CONV
regularizer {
l2_regularizer {
weight: 0.0
}
}
initializer {
truncated_normal_initializer {
stddev: 0.009999999776482582
}
}
}
first_stage_nms_score_threshold: 0.0
first_stage_nms_iou_threshold: 0.699999988079071
first_stage_max_proposals: 32
first_stage_localization_loss_weight: 2.0
first_stage_objectness_loss_weight: 1.0
initial_crop_size: 14
maxpool_kernel_size: 2
maxpool_stride: 2
second_stage_box_predictor {
mask_rcnn_box_predictor {
fc_hyperparams {
op: FC
regularizer {
l2_regularizer {
weight: 0.0
}
}
initializer {
variance_scaling_initializer {
factor: 1.0
uniform: true
mode: FAN_AVG
}
}
}
use_dropout: false
dropout_keep_probability: 1.0
}
}
second_stage_batch_size: 2
second_stage_post_processing {
batch_non_max_suppression {
score_threshold: 0.0
iou_threshold: 0.6000000238418579
max_detections_per_class: 25
max_total_detections: 25
}
score_converter: SOFTMAX
}
second_stage_localization_loss_weight: 2.0
second_stage_classification_loss_weight: 1.0
}
}
train_config {
batch_size: 1
data_augmentation_options {
random_horizontal_flip {
}
}
optimizer {
momentum_optimizer {
learning_rate {
manual_step_learning_rate {
initial_learning_rate: 0.0003000000142492354
schedule {
step: 3000000
learning_rate: 2.9999999242136255e-05
}
schedule {
step: 3500000
learning_rate: 3.000000106112566e-06
}
}
}
momentum_optimizer_value: 0.8999999761581421
}
use_moving_average: false
}
gradient_clipping_by_norm: 10.0
fine_tune_checkpoint: "/home/vectorweb3/Documents/Development_Sandbox/Manya/experimental-scripts/models/research/oid/faster_rcnn_resnet50_fgvc_2018_07_19/model.ckpt"
from_detection_checkpoint: true
num_steps: 100000
freeze_variables: ".*FeatureExtractor*."
load_all_detection_checkpoint_vars: false
}
train_input_reader {
label_map_path: "/home/vectorweb3/Documents/Development_Sandbox/Manya/experimental-scripts/models/research/object_detection/data/mosquito_label_map.pbtxt"
queue_capacity: 4
min_after_dequeue: 2
tf_record_input_reader {
input_path: "/home/vectorweb3/Documents/Development_Sandbox/Manya/training_input_output_models/set4/tf_records.record"
}
}
eval_config {
num_examples: 40
max_evals: 1
metrics_set: "pascal_voc_detection_metrics"
use_moving_averages: false
min_score_threshold: 0.0
}
eval_input_reader {
label_map_path: "/home/vectorweb3/Documents/Development_Sandbox/Manya/experimental-scripts/models/research/object_detection/data/mosquito_label_map.pbtxt"
shuffle: false
num_readers: 1
tf_record_input_reader {
input_path: "/home/vectorweb3/Documents/Development_Sandbox/Manya/training_input_output_models/set4/tf_records.record"
}
}
原始配置文件为here。 主要区别在于以下内容:
训练损失如下: