我想对RGB图像应用高斯模糊。 我希望它可以在每个频道上独立运行。下面的代码输出具有3个通道的模糊图像,但所有通道均具有相同的值,产生灰色图像。
gauss_kernel_2d = gaussian_kernel(2, 0.0, 1.0) # outputs a 5*5 tensor
gauss_kernel = tf.tile(gauss_kernel_2d[:, :, tf.newaxis, tf.newaxis], [1, 1, 3, 3]) # 5*5*3*3
image = tf.nn.conv2d(tf.expand_dims(image, 0), gauss_kernel, strides=[1, 1, 1, 1], padding='SAME') # 1*600*800*3
image = tf.squeeze(image) # 600*800*3
# shape of image needs to be [batch, in_height, in_width, in_channels]
# shape of filter needs to be [filter_height, filter_width, in_channels, out_channels]
我正在寻找一个Tensorflow函数,该函数将卷积分别应用于每个R / G / B通道并输出RGB模糊图像。
答案 0 :(得分:1)
您可以使用tf.nn.separable_conv2d
来做到这一点:
import tensorflow as tf
# ...
gauss_kernel_2d = gaussian_kernel(2, 0.0, 1.0) # outputs a 5*5 tensor
gauss_kernel = tf.tile(gauss_kernel_2d[:, :, tf.newaxis, tf.newaxis], [1, 1, 3, 1]) # 5*5*3*1
# Pointwise filter that does nothing
pointwise_filter = tf.eye(3, batch_shape=[1, 1])
image = tf.nn.separable_conv2d(tf.expand_dims(image, 0), gauss_kernel, pointwise_filter,
strides=[1, 1, 1, 1], padding='SAME')
image = tf.squeeze(image) # 600*800*3