我有两个对齐的虚拟变量数据框。我想将两者相乘并获得一个新的数据框结果,即两者与3行和6列(ItalyxJan,ItalyxFeb,ItalyxMar,ChinaxJan ..)的相互作用。
# Creating the first dataframe
df1=pd.DataFrame({"Italy":[0,0,1],
"China":[1,1,0]})
# Creating the second dataframe with <code>Na</code> value
df2=pd.DataFrame({"Jan":[1,0,0],
"Feb":[0,1,0],
"Mar":[0,0,1]})
df3 = df1.mul(df2.values, axis=0)
,但是我收到了错误消息
ValueError: Unable to coerce to DataFrame, shape must be (3, 2): given (3, 3)
##Expected outputs
df3=pd.DataFrame({"Italy*Jan":[0,0,0],
"Italy*Feb":[0,0,0],
"Italy*Mar":[0,0,1],
"China*Jan":[1,0,1],
"China*fe":[0,1,0],
"Chian*Mar":[0,0,0]})
建议?
答案 0 :(得分:3)
您可以同时创建MultiIndex.from_product
和DataFrame.reindex
,因此可能会多个:
mux = pd.MultiIndex.from_product([df1.columns, df2.columns])
df1 = df1.reindex(mux, axis=1, level=0)
print (df1)
Italy China
Jan Feb Mar Jan Feb Mar
0 0 0 0 1 1 1
1 0 0 0 1 1 1
2 1 1 1 0 0 0
df2 = df2.reindex(mux, axis=1, level=1)
print (df2)
Italy China
Jan Feb Mar Jan Feb Mar
0 1 0 0 1 0 0
1 0 1 0 0 1 0
2 0 1 1 0 1 1
df3 = df1.mul(df2, axis=0)
print (df3)
Italy China
Jan Feb Mar Jan Feb Mar
0 0 0 0 1 0 0
1 0 0 0 0 1 0
2 0 1 1 0 0 0
最后可以用MultiIndex
和map
展平join
:
df3.columns = df3.columns.map('x'.join)
print (df3)
ItalyxJan ItalyxFeb ItalyxMar ChinaxJan ChinaxFeb ChinaxMar
0 0 0 0 1 0 0
1 0 0 0 0 1 0
2 0 1 1 0 0 0