在BaggingClassifier中绘制准确性的历史记录

时间:2019-04-14 21:20:43

标签: python scikit-learn random-forest

我已经训练了一个简单的随机森林算法和装袋分类器(n_estimators = 100)。可以在装袋分类器中绘制准确性的历史记录吗?如何计算100个样本中的方差?

我刚刚打印了两种算法的准确性值:

# DecisionTree
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.90)
clf2 = tree.DecisionTreeClassifier()
clf2.fit(X_tr, y_tr)
pred2 = clf2.predict(X_test)
acc2  = clf2.score(X_test, y_test)
acc2  # 0.6983930778739185

# Bagging
clf3 = BaggingClassifier(tree.DecisionTreeClassifier(),  max_samples=0.5, max_features=0.5, n_estimators=100,\
                         verbose=2)
clf3.fit(X_tr, y_tr)
pred3 = clf3.predict(X_test)
acc3=clf3.score(X_test,y_test)
acc3 # 0.911619283065513

1 个答案:

答案 0 :(得分:1)

我认为您无法从合适的BaggingClassifier获得此信息。但是您可以通过适合不同的n_estimators来创建这样的图:

import matplotlib.pyplot as plt

from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import BaggingClassifier

from sklearn import datasets
from sklearn.model_selection import train_test_split

iris = datasets.load_iris()
X, X_test, y, y_test = train_test_split(iris.data,
                                        iris.target,
                                        test_size=0.20)

estimators = list(range(1, 20))
accuracy = []

for n_estimators in estimators:
    clf = BaggingClassifier(DecisionTreeClassifier(max_depth=1),
                            max_samples=0.2,
                            n_estimators=n_estimators)
    clf.fit(X, y)
    acc = clf.score(X_test, y_test)
    accuracy.append(acc)

plt.plot(estimators, accuracy)
plt.xlabel("Number of estimators")
plt.ylabel("Accuracy")
plt.show()

(当然,虹膜数据集很容易只包含一个DecisionTreeClassifier,因此在此示例中我设置了max_depth=1。)

要获得具有统计意义的结果,您应为每个BaggingClassifier多次拟合n_estimators,并取所获得准确度的平均值。