以下脚本通过curve_fit(来自scipy.optimize)拟合曲线弓形,如下所示:
ydata = numpy.array[ 1.6504 1.63928044 1.62855028 1.6181874 1.60817119 1.59848249 1.58910347 1.58001759 1.57120948 1.56266487 1.55437054 1.54631424 1.5384846 1.53087109 1.52346397 1.5162542 1.5092334 1.50239383 1.4957283 1.48923013 1.48289315 1.47671162 1.4706802 1.46479393 1.45904821 1.45343874 1.44796151 1.44261281 1.43738913 1.43228723 1.42730406 1.42243677 1.4176827 1.41303936 1.40850439 1.40407561 1.39975096 1.39552851 1.39140647 1.38738314 1.38345695 1.37962642 1.37589018 1.37224696 1.36869555 1.36523487 1.36186389 1.35858169 1.35538741 1.35228028 1.34925958 1.34632469 1.34347504 1.34071015 1.33802957 1.33543295 1.33291998 1.33049042 1.32814407 1.32588081 1.32370057 1.32160331 1.31958908 1.31765795 1.31581005 1.31404556 1.31236472 1.3107678 1.30925513 1.30782709 1.30648411 1.30522666 1.3040553 1.30297062 1.30197327 1.30106398 1.30024355 1.29951286 1.29887287 1.29832464 1.29786933 1.29750821 1.29724268 1.29707426 1.29700463 1.29703564 1.29716927 1.29740773 1.2977534 1.29820885 1.29877688 1.29946049 1.3002629 1.30118751 1.30223793 1.30341792 1.30473139 1.30618232 1.30777475 1.30951267 1.3114 ]
xdata = numpy.array[ 0. 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2 0.21 0.22 0.23 0.24 0.25 0.26 0.27 0.28 0.29 0.3 0.31 0.32 0.33 0.34 0.35 0.36 0.37 0.38 0.39 0.4 0.41 0.42 0.43 0.44 0.45 0.46 0.47 0.48 0.49 0.5 0.51 0.52 0.53 0.54 0.55 0.56 0.57 0.58 0.59 0.6 0.61 0.62 0.63 0.64 0.65 0.66 0.67 0.68 0.69 0.7 0.71 0.72 0.73 0.74 0.75 0.76 0.77 0.78 0.79 0.8 0.81 0.82 0.83 0.84 0.85 0.86 0.87 0.88 0.89 0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1. ]
sigma = np.ones(len(xdata))
sigma[[0, -1]] = 0.01
def function_cte(x, b):
return 1.31*x + 1.57*(1-x) - b*x*(1-x)
def function_linear(x, c1, c2):
return 1.31*x + 1.57*(1-x) - (c1+c2*x)*x*(1-x)
popt_cte, pcov_cte = curve_fit(function_cte, xdata, ydata, sigma=sigma)
popt_lin, pcov_lin = curve_fit(function_linear, xdata, ydata, sigma=sigma)
即,两个函数的初始点都与要拟合的数据不一致(xdata,ydata)。
我想在端点(0.0,1.57)和(1.0,1.31)的同一点上限制拟合,以最大程度地减少误差。基于此代码的任何想法还是最好采用另一种方式?
谢谢!