例如,我想要类似的东西
模型(输入=某物,输出=标量)
在您想调试没有状态“ X”的情况下的模型/训练过程时,首先出现(生成)。因此,您仍然具有Y的batch_size。这就是您想要的。
我正在尝试这样的事情:
val mongoClient = MongoClient("uriString")
val db = mongoClient.getDatabase("databasename")
val collection = db.getCollection("collectionName")
var observableDoc = collection.find(equal("my_id", "12345")).first
observableDoc.subscribe(new Observer[T] {
println(funcname + " : Inside observableStatus subscribe start")
logger.info(funcname + " : Inside observableStatus subscribe start")
override def onNext(result: T): Unit = {
println(funcname + " onNext")
logger.info(funcname + " onNext")
}
override def onError(e: Throwable): Unit = {
println(funcname + " Failed")
logger.info(funcname + " Failed")
}
override def onComplete(): Unit = {
println(funcname + " Complete")
logger.info(funcname + " Complete")
}
println(funcname + " : Inside observableStatus subscribe end")
logger.info(funcname + " : Inside observableStatus subscribe end")
})
val awaitedR = Await.result(observableDoc.toFuture, Duration.Inf)
答案 0 :(得分:0)
一种简单的方法是使用Keras的功能性API:Keras API docu
inputs = Input(shape=(784,))
# a layer instance is callable on a tensor, and returns a tensor
x = Dense(64, activation='relu')(inputs)
x = Dense(64, activation='relu')(x)
predictions = Dense(10, activation='softmax')(x)
v = 0.25 * x
# This creates a model that includes
# the Input layer and three Dense layers
model = Model(inputs=inputs, outputs=[predictions, v])